We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Given a positive integer m, let $\mathbb {Z}_m$ be the set of residue classes mod m. For $A\subseteq \mathbb {Z}_m$ and $n\in \mathbb {Z}_m$, let $\sigma _A(n)$ be the number of solutions to the equation $n=x+y$ with $x,y\in A$. Let $\mathcal {H}_m$ be the set of subsets $A\subseteq \mathbb {Z}_m$ such that $\sigma _A(n)\geq 1$ for all $n\in \mathbb {Z}_m$. Let
Ding and Zhao [‘A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture’, Int. J. Number Theory20 (2024), 1515–1523] showed that $\limsup _{m\rightarrow \infty }\ell _m\le 192$. We prove
A set $S\subset {\mathbb {N}}$ is a Sidon set if all pairwise sums $s_1+s_2$ (for $s_1, s_2\in S$, $s_1\leqslant s_2$) are distinct. A set $S\subset {\mathbb {N}}$ is an asymptotic basis of order 3 if every sufficiently large integer $n$ can be written as the sum of three elements of $S$. In 1993, Erdős, Sárközy and Sós asked whether there exists a set $S$ with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb {F}_q[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.
An additive basis $A$ is finitely stable when the order of $A$ is equal to the order of $A\cup F$ for all finite subsets $F\subseteq \mathbb{N}$. We give a sufficient condition for an additive basis to be finitely stable. In particular, we prove that $\mathbb{N}^{2}$ is finitely stable.
We improve recent results of Bourgain and Shparlinski to show that, for almost all primes $p$, there is a multiple $mp$ that can be written in binary as
with $k=6$ (corresponding to Hamming weight seven). We also prove that there are infinitely many primes $p$ with a multiplicative subgroup $A=\langle g\rangle \subset \mathbb{F}_{p}^{\ast }$, for some $g\in \{2,3,5\}$, of size $|A|\gg p/(\log p)^{3}$, where the sum–product set $A\cdot A+A\cdot A$ does not cover $\mathbb{F}_{p}$ completely.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.