We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter explores the intricate interplay between music, emotions, and the body’s regulatory systems – the autonomic nervous system, hormones, and the immune system. It elucidates how music influences physiological responses, such as heart rate, breathing, and hormone levels, and how these changes can impact health and well-being. The chapter looks at the dual roles of the sympathetic and parasympathetic nervous systems in regulating bodily functions, highlighting how music can modulate their activity. It also discusses the complex interplay of hormones such as cortisol, adrenaline, and noradrenaline, emphasizing the distinction between healthy and unhealthy stress. Research findings on the effects of music on cortisol levels are presented, demonstrating how relaxing music tends to decrease cortisol, while activating music tends to increase it. Both responses can be beneficial, depending on the context and individual needs. Furthermore, the chapter explores the impact of music on the immune system, and underlines the importance of positive emotions and moods in promoting a healthy immune response. Overall, this chapter provides a comprehensive overview of how music interacts with our physiological systems, offering insights into its therapeutic potential for both healthy individuals and those facing health challenges.
Edited by
Dharti Patel, Mount Sinai West and Morningside Hospitals, New York,Sang J. Kim, Hospital for Special Surgery, New York,Himani V. Bhatt, Mount Sinai West and Morningside Hospitals, New York,Alopi M. Patel, Rutgers Robert Wood Johnson Medical School, New Jersey
This chapter discusses the autonomic nervous system including the receptors, neurotransmitters, responses, reflexes, and more. This chapter also addressed temperature regulation, sensing, and temperature management in the perioperative setting.
Postural orthostatic tachycardia syndrome is a debilitating disorder. We compared paediatric patients with this dysautonomia presenting with and without peak upright heart rate > 100 beats per minute.
Materials and Methods:
Subjects were drawn from the Postural Orthostatic Tachycardia Syndrome Program database of the Children’s Hospital of Philadelphia diagnosed between 2007 and 2018. Subjects were aged 12–18 years at diagnosis with demographic data, supine and peak heart rate from 10-minute stand, symptoms, and family history. Patients were divided into “low heart rate” (peak less than 100 beats/minute) and “high heart rate” (peak at least 100 beats/minute) groups.
Results:
In total, 729 subjects were included (low heart rate group: 131 patients, high heart rate group: 598 patients). The low heart rate group had later age at diagnosis (16.1 versus 15.7, p = 0.0027). Median heart rate increase was 32 beats/minute in the low heart rate group versus 40 beats/minute in the high heart rate group (p < 0.00001). Excluding palpitations and tachypalpitations, there were no differences in symptom type or frequency between groups.
Discussion:
Paediatric patients meeting heart rate criteria for postural orthostatic tachycardia syndrome but without peak heart rate > 100 demonstrate no difference in symptom type or frequency versus those who meet both criteria. Differences observed reached statistical significance due to population size but are not clinically meaningful. This suggests that increased heart rate, but not necessarily tachycardia, is seen in these patients, supporting previous findings suggesting maximal heart rate is not a major determinant of symptom prevalence in paediatric postural orthostatic tachycardia syndrome.
In pediatric multisystem inflammatory syndrome and isolated viral myocarditis/myopericarditis, autonomic nervous system function can be evaluated by a non-invasive method called heart rate variability. This study aims to evaluate heart rate variability in these two groups by comparing them with each other. This is the first study assessing these values in these two groups of patients.
Method:
Patients who are diagnosed with multisystem inflammatory syndrome in children and isolated viral myocarditis/myopericarditis at a university hospital from September 2021 to February 2023 are screened by electrocardiography, echocardiography, and 24-hour Holter monitoring. A healthy control group, compatible in age and gender with the patient groups, was selected from healthy subjects that applied to the hospital for palpitation, murmur, and/or chest pain. Heart rate variability parameters and related laboratory markers were analyzed and compared among the three groups.
Results:
There were 30 patients with multisystem inflammatory syndrome in children, 43 patients with isolated viral myocarditis/myopericarditis, and 109 participants in the healthy control group. Statistically significant differences were found in most of the heart rate variability parameters: standard deviation of normal to normal intervals (SDNN), the mean of the 5- minute RR interval standard deviations (SDNNİ), the standard deviation of 5-minute R wave to R wave(RR) interval means (SDANN), the root mean square of successive RR interval differences (RMSSD), and the percentage of the beats with a consecutive RR interval difference of more than 50 ms (pNN50%), very low frequency, high frequency, low frequency, triangular index, and low frequency/high-frequency ratio. Multisystem inflammatory syndrome in children patients had impaired and declined heart rate variability values compared to the other two groups. In patients with myocarditis/myopericarditis, we couldn’t find a significant difference in these parameters with the control group.
Conclusion:
Heart rate variability can be used as an important non-invasive autonomic function parameter in determining prognosis and treatment plans, especially in patients diagnosed with multisystem inflammatory syndrome in children. This impairment of autonomic activity could be more prominent in patients with decreased left ventricular systolic functions.
In the present chapter, coping and its development is considered from a dynamical biological systems perspective, drawing to the framework of neurovisceral integration. Higher order constituents of the central nervous system (CNS) and the autonomic nervous system (ANS) are assumed to be in dynamic interplay, enabling the organism to integrate information from within and outside the body and to flexibly adapt the regulation of cognition, perception, action, and physiology according to changing environmental demands. The underlying neural circuitry, primarily prefrontal and limbic structures, can thereby be understood as the core of coping. During development, and particularly in periods of heightened vulnerability, the capacity of the developing organism to adaptively deal with adverse experiences might be overstrained, resulting in an increased risk for pathological outcomes. Yet, as will be argued, a certain level of exposure to adversity may be required to enable later adaptive functioning, and thus coping.
For four decades, developmental scientists have been examining the links between children’s and adolescents’ prosociality and the activity of their peripheral physiological systems. In this chapter, we review the theories and studies that evaluate these links. In particular, we emphasize that the developmental psychophysiology of prosociality needs to be understood as involving dynamic and nonlinear processes occurring within the immediate contexts of evocative situations and shaped by the enduring contexts of close relationships.
Loss-of-control (LOC) eating commonly develops during adolescence, and it predicts full-syndrome eating disorders and excess weight gain. Although negative emotions and emotion dysregulation are hypothesized to precede and predict LOC eating, they are rarely examined outside the self-report domain. Autonomic indices, including heart rate (HR) and heart rate variability (HRV), may provide information about stress and capacity for emotion regulation in response to stress.
Methods
We studied whether autonomic indices predict LOC eating in real-time in adolescents with LOC eating and body mass index (BMI) ⩾70th percentile. Twenty-four adolescents aged 12–18 (67% female; BMI percentile mean ± standard deviation = 92.6 ± 9.4) who reported at least twice-monthly LOC episodes wore biosensors to monitor HR, HRV, and physical activity for 1 week. They reported their degree of LOC after all eating episodes on a visual analog scale (0–100) using a smartphone.
Results
Adjusting for physical activity and time of day, higher HR and lower HRV predicted higher self-reported LOC after eating. Parsing between- and within-subjects effects, there was a significant, positive, within-subjects association between pre-meal HR and post-meal LOC rating. However, there was no significant within-subjects effect for HRV, nor were there between-subjects effects for either electrophysiologic variable.
Conclusions
Findings suggest that autonomic indices may either be a marker of risk for subsequent LOC eating or contribute to LOC eating. Linking physiological markers with behavior in the natural environment can improve knowledge of illness mechanisms and provide new avenues for intervention.
An individual’s recovery from alcohol use disorder (AUD) occurs within the context of changes in drinking behavior as well as changes in physical and mental health. This chapter considers how drinking behavior change can arise from, and be supported by, functional improvements in the brain and in peripheral organ systems. The chapter proposes that arousal serves as a common process that can either support or hinder recovery through its link to executive control, negative emotionality, and cue salience; arousal is measurable through overt human behavior, physiological reactivity, and neural activation; and arousal modulation may serve as a holistic intervention target to help sustain recovery. The chapter considers how the arousal construct may be used to identify more homogeneous subgroups of persons in recovery, such as those who may benefit from arousal-modulation adjuvants to bolster executive cognitive control, affect regulation, and flexible responses to contextual cues.
Antisociality across adolescence and young adulthood puts individuals at high risk of developing a variety of problems. Prior research has linked antisociality to autonomic nervous system and endocrinological functioning. However, there is large heterogeneity in antisocial behaviors, and these neurobiological measures are rarely studied conjointly, limited to small specific studies with narrow age ranges, and yield mixed findings due to the type of behavior examined.
Methods
We harmonized data from 1489 participants (9–27 years, 67% male), from six heterogeneous samples. In the resulting dataset, we tested relations between distinct dimensions of antisociality and heart rate, pre-ejection period (PEP), respiratory sinus arrhythmia, respiration rate, skin conductance levels, testosterone, basal cortisol, and the cortisol awakening response (CAR), and test the role of age throughout adolescence and young adulthood.
Results
Three dimensions of antisociality were uncovered: ‘callous-unemotional (CU)/manipulative traits’, ‘intentional aggression/conduct’, and ‘reactivity/impulsivity/irritability’. Shorter PEPs and higher testosterone were related to CU/manipulative traits, and a higher CAR is related to both CU/manipulative traits and intentional aggression/conduct. These effects were stable across age.
Conclusions
Across a heterogeneous sample and consistent across development, the CAR may be a valuable measure to link to CU/manipulative traits and intentional aggression, while sympathetic arousal and testosterone are additionally valuable to understand CU/manipulative traits. Together, these findings deepen our understanding of the fundamental mechanisms underlying different components of antisociality. Finally, we illustrate the potential of using current statistical techniques for combining multiple datasets to draw robust conclusions about biobehavioral associations.
This study tested the independent effects and interactions of sympathetic nervous system reactivity and hostile attribution biases (HAB) in predicting change in pure and co-occurring relational bullying and victimization experiences over one year. Co-occurring and pure relational bullying and victimization experiences were measured using a dimensional bifactor model, aiming to address methodological limitations of categorical approaches, using data from 300 preschoolers (Mage = 44.70 months, SD = 4.38). Factor scores were then saved and used in nested path analyses with a subset of participants (n = 81) to test main study hypotheses regarding effects of HAB and skin conductance level reactivity (SCL-R). Bifactor models provided good fit to the data at two independent time points. HAB and SCL-R interacted to predict increases in co-occurring relational bullying/victimization with evidence for over- and underarousal pathways.
Approximate Entropy is an extensively enforced metric to evaluate chaotic responses and irregularities of RR intervals sourced from an eletrocardiogram. However, to estimate their responses, it has one major problem – the accurate determination of tolerances and embedding dimensions. So, we aimed to overt this potential hazard by calculating numerous alternatives to detect their optimality in malnourished children.
Materials and methods:
We evaluated 70 subjects split equally: malnourished children and controls. To estimate autonomic modulation, the heart rate was measured lacking any physical, sensory or pharmacologic stimuli. In the time series attained, Approximate Entropy was computed for tolerance (0.1→0.5 in intervals of 0.1) and embedding dimension (1→5 in intervals of 1) and the statistical significances between the groups by their Cohen’s ds and Hedges’s gs were totalled.
Results:
The uppermost value of statistical significance accomplished for the effect sizes for any of the combinations was −0.2897 (Cohen’s ds) and −0.2865 (Hedges’s gs). This was achieved with embedding dimension = 5 and tolerance = 0.3.
Conclusions:
Approximate Entropy was able to identify a reduction in chaotic response via malnourished children. The best values of embedding dimension and tolerance of the Approximate Entropy to identify malnourished children were, respectively, embedding dimension = 5 and embedding tolerance = 0.3. Nevertheless, Approximate Entropy is still an unreliable mathematical marker to regulate this.
Maternal obesity is an established risk factor for poor infant neurodevelopmental outcomes; however, the link between maternal weight and fetal development in utero is unknown. We investigated whether maternal obesity negatively influences fetal autonomic nervous system (ANS) development. Fetal heart rate variability (HRV) is an index of the ANS that is associated with neurodevelopmental outcomes in the infant. Maternal–fetal magnetocardiograms were recorded using a fetal biomagnetometer at 36 weeks (n = 46). Fetal HRV was represented by the standard deviation of sinus beat-to-beat intervals (SDNN). Maternal weight was measured at enrollment (12–20 weeks) and 36 weeks. The relationships between fetal HRV and maternal weight at both time points were modeled using adjusted ordinary least squares regression models. Higher maternal weight at enrollment and 36 weeks were associated with lower fetal HRV, an indicator of poorer ANS development. Further study is needed to better understand how maternal obesity influences fetal autonomic development and long-term neurodevelopmental outcomes.
Stimulation of gastrointestinal taste receptors affects eating behaviour. Intraduodenal infusion of tastants leads to increased satiation and reduced food intake, whereas intraileal infusion of tastants does not affect eating behaviour. Currently, it is unknown whether oral- or intragastric administration of tastants induces a larger effect on eating behaviour. This study investigated the effects of oral- and/or intragastric administration of quinine on food intake, appetite sensations and heart rate variability (HRV). In a blinded randomised crossover trial, thirty-two healthy volunteers participated in four interventions with a 1-week washout: oral placebo and intragastric placebo (OPGP), oral quinine and intragastric placebo (OQGP), oral placebo and intragastric quinine (OPGQ) and oral quinine and intragastric quinine (OQGQ). On test days, 150 min after a standardised breakfast, subjects ingested a capsule containing quinine or placebo and were sham-fed a mixture of quinine or placebo orally. At 50 min after intervention, subjects received an ad libitum meal to measure food intake. Visual analogue scales for appetite sensations were collected, and HRV measurements were performed at regular intervals. Oral and/or intragastric delivery of the bitter tastant quinine did not affect food intake (OPGP: 3273·6 (sem 131·8) kJ, OQGP: 3072·7 (sem 132·2) kJ, OPGQ: 3289·0 (sem 132·6) kJ and OQGQ: 3204·1 (sem 133·1) kJ, P = 0·069). Desire to eat and hunger decreased after OQGP and OPGQ compared with OPGP (P < 0·001 and P < 0·05, respectively), whereas satiation, fullness and HRV did not differ between interventions. In conclusion, sole oral sham feeding with and sole intragastric delivery of quinine decreased desire to eat and hunger, without affecting food intake, satiation, fullness or HRV.
Maltreatment adversely impacts the development of children across a host of domains. One way in which maltreatment may exert its deleterious effects is by becoming embedded in the activity of neurophysiological systems that regulate metabolic function. This paper reviews the literature regarding the association between childhood maltreatment and the activity of three systems: the parasympathetic nervous system, the sympathetic nervous system, and the hypothalamic–pituitary–adrenal axis. A particular emphasis is placed on the extent to which the literature supports a common account of activity across these systems under conditions of homeostasis and stress. The paper concludes with an outline of directions for future research and the implications of the literature for policy and practice.
This chapter is concerned with the relationship between imagination, communicative musicality, intersubjectivity, and therapeutic practice. It begins with a personal account of the history of the theory of Communicative Musicality, tracing its origins in the domains of psychology and psychobiology (including the study of child development), psychiatry, and the neuroscience of emotion, with particular reference to the work of Colwyn Trevarthen, Daniel Stern, and Jaak Panksepp. There is discussion of the relationship between phenomenology and intersubjectivity, beginning with Husserl and Heidegger, and leading toward the work of Daniel Stern and the importance of the idea of the “present moment” in both psychotherapy and everyday human relationships. The chapter goes on to describe how the theory of communicative musicality and related psychology, psychobiology, psychiatry and neuroscience have influenced therapeutic creative work with children who are victims of conflict. There is discussion of the pathology of PTSD, including dysregulation of the autonomic nervous system, endocrine systems, movement repertoires and breathing, and the potential for communicative musicality to help alleviate both mental and physiological symptoms. The chapter ends with an example of work with imagination, communicative musicality, intersubjectivity, and therapeutic practice in the field, with Syrian refugee children in the Beqaa Valley, Lebanon.
High-dose chemotherapy and haematopoietic stem cell transplantation are essential for patients with paediatric haematologic diseases, although cardiotoxicity remains a concern. Heart rate variability analysis can evaluate autonomic nervous function interactions with cardiac function.
Objective:
This study aimed to characterise heart rate variability differences between patients undergoing chemotherapy and controls, and the effects of haematopoietic stem cell transplantation on the autonomic nervous system in patients with haematological malignancies.
Methods:
Nineteen patients (11 male, median age: 11.6 years) who received conventional chemotherapy followed by transplantation and 19 non-transplant patients (10 male, median age: 11.5 years) receiving chemotherapy only between 2006 and 2018 for haematological malignancies were retrospectively enrolled. Data from 24-hour Holter monitoring were recorded after chemotherapy and before and after transplantation. Heart rate variability was analysed in patients and 32 matched normal controls.
Results:
There were significant differences between patients and normal controls in all heart rate variability analysis parameters apart from coefficient of variation of RR interval and standard deviation of the average normal RR interval for all 5-minute segments during sleeping. There was a significant difference in the cumulative anthracycline dose and heart rate variability during sleep between the non-transplant and pre-transplant groups. We observed no remarkable differences in time-domain analysis parameters between before and after transplantation, although the low-frequency component of power-spectrum analysis during awake hours was significantly decreased after transplantation.
Conclusion:
Conventional chemotherapy for paediatric haematologic diseases may be a risk factor for autonomic dysfunction. Further declines in heart rate variability after transplantation appear minor.
Changes in cardiac autonomic regulation, expressed by increased sympathetic activity and decreased heart rate variability, have an important relationship with the onset of lethal cardiac phenomena. Therefore, we aimed to evaluate the cardiac autonomic behaviour in young people according to their level of physical activity. Through the International Physical Activity Questionnaire, 55 healthy young non-smokers with no history of previous diseases and whose parents did not suffer from metabolic syndrome were assessed and divided into groups: sedentary (n=12), insufficiently active (n=16), active (n=14), and very active (n=13). We collected respiratory rate, systolic and diastolic blood pressure at rest, and body mass index. Subjects remained supine at rest, and without mental stress for 15 minutes in a controlled environment. Using a cardiofrequency meter (Polar® RS800CX), data were analysed in the time domain, frequency domain, and detrended fluctuation analysis. For the sedentary group, the mean RR and rMSSD were significantly lower, and the insufficiently active group showed higher means, but significantly only for rMSSD. The insufficiently active group showed in the detrended fluctuation analysis that α2 was significantly lower compared with the sedentary, active, and very active groups. We conclude that young, healthy, sedentary individuals present an increased heart rate and that insufficiently active individuals present a decreased fractal correlation and increased parasympathetic activity.
We conducted signal detection analyses to test for curvilinear, U-shaped relations between early experiences of adversity and heightened physiological responses to challenge, as proposed by biological sensitivity to context theory. Based on analysis of an ethnically diverse sample of 338 kindergarten children (4–6 years old) and their families, we identified levels and types of adversity that, singly and interactively, predicted high (top 25%) and low (bottom 25%) rates of stress reactivity. The results offered support for the hypothesized U-shaped curve and conceptually replicated and extended the work of Ellis, Essex, and Boyce (2005). Across both sympathetic and adrenocortical systems, a disproportionate number of children growing up under conditions characterized by either low or high adversity (as indexed by restrictive parenting, family stress, and family economic condition) displayed heightened stress reactivity, compared with peers growing up under conditions of moderate adversity. Finally, as hypothesized by the adaptive calibration model, a disproportionate number of children who experienced exceptionally stressful family conditions displayed blunted cortisol reactivity to stress.
Developing the ability to regulate one's emotions in accordance with
contextual demands (i.e., emotion regulation) is a central developmental task of
early childhood. These processes are supported by the engagement of the
autonomic nervous system (ANS), a physiological hub of a vast network tasked
with dynamically integrating real-time experiential inputs with internal
motivational and goal states. To date, much of what is known about the ANS and
emotion regulation has been based on measures of respiratory sinus arrhythmia, a
cardiac indicator of parasympathetic activity. In the present study, we draw
from dynamical systems models to introduce two nonlinear indices of cardiac
complexity (fractality and sample entropy) as potential indicators of these
broader ANS dynamics. Using data from a stratified sample of preschoolers living
in high- (i.e., emergency homeless shelter) and low-risk contexts
(N = 115), we show that, in conjunction with
respiratory sinus arrhythmia, these nonlinear indices may help to clarify
important differences in the behavioral manifestations of emotion regulation. In
particular, our results suggest that cardiac complexity may be especially useful
for discerning active, effortful emotion regulation from less effortful
regulation and dysregulation.