We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We describe algebraically, diagrammatically, and in terms of weight vectors, the restriction of tensor powers of the standard representation of quantum $\mathfrak {sl}_2$ to a coideal subalgebra. We realize the category as a module category over the monoidal category of type $\pm 1$ representations in terms of string diagrams and via generators and relations. The idempotents projecting onto the quantized eigenspaces are described as type $B/D$ analogues of Jones–Wenzl projectors. As an application, we introduce and give recursive formulas for analogues of $\Theta$-networks.
We introduce an explicit family of representations of the double affine Hecke algebra $\mathbb {H}$ acting on spaces of quasi-polynomials, defined in terms of truncated Demazure-Lusztig type operators. We show that these quasi-polynomial representations provide concrete realisations of a natural family of cyclic Y-parabolically induced $\mathbb {H}$-representations. We recover Cherednik’s well-known polynomial representation as a special case.
The quasi-polynomial representation gives rise to a family of commuting operators acting on spaces of quasi-polynomials. These generalize the Cherednik operators, which are fundamental in the study of Macdonald polynomials. We provide a detailed study of their joint eigenfunctions, which may be regarded as quasi-polynomial, multi-parametric generalisations of nonsymmetric Macdonald polynomials. We also introduce generalizations of symmetric Macdonald polynomials, which are invariant under a multi-parametric generalization of the standard Weyl group action.
We connect our results to the representation theory of metaplectic covers of reductive groups over non-archimedean local fields. We introduce root system generalizations of the metaplectic polynomials from our previous work by taking a suitable restriction and reparametrization of the quasi-polynomial generalizations of Macdonald polynomials. We show that metaplectic Iwahori-Whittaker functions can be recovered by taking the Whittaker limit of these metaplectic polynomials.
We introduce a new algebra $\mathcal {U}=\dot {\mathrm {\mathbf{U}}}_{0,N}(L\mathfrak {sl}_n)$ called the shifted $0$-affine algebra, which emerges naturally from studying coherent sheaves on n-step partial flag varieties through natural correspondences. This algebra $\mathcal {U}$ has a similar presentation to the shifted quantum affine algebra defined by Finkelberg-Tsymbaliuk. Then, we construct a categorical $\mathcal {U}$-action on a certain 2-category arising from derived categories of coherent sheaves on n-step partial flag varieties. As an application, we construct a categorical action of the affine $0$-Hecke algebra on the bounded derived category of coherent sheaves on the full flag variety.
In an earlier work, we defined a “generalised Temperley–Lieb algebra” $TL_{r, 1, n}$ corresponding to the imprimitive reflection group G(r, 1, n) as a quotient of the cyclotomic Hecke algebra. In this work we introduce the generalised Temperley–Lieb algebra $TL_{r, p, n}$ which corresponds to the complex reflection group G(r, p, n). Our definition identifies $TL_{r, p, n}$ as the fixed-point subalgebra of $TL_{r, 1, n}$ under a certain automorphism $\sigma$. We prove the cellularity of $TL_{r, p, n}$ by proving that $\sigma$ induces a special shift automorphism with respect to the cellular structure of $TL_{r, 1, n}$. We also give a description of the cell modules of $TL_{r, p, n}$ and their decomposition numbers, and finally we point to how our algebras might be categorified and could lead to a diagrammatic theory.
We geometrize the mod p Satake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric mod p Hecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric mod p Hecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a mod p Local Langlands Correspondence.
We define oriented Temperley–Lieb algebras for Hermitian symmetric spaces. This allows us to explain the existence of closed combinatorial formulae for the Kazhdan–Lusztig polynomials for these spaces.
We extend the notion of ascent-compatibility from symmetric groups to all Coxeter groups, thereby providing a type-independent framework for constructing families of modules of $0$-Hecke algebras. We apply this framework in type B to give representation–theoretic interpretations of a number of noteworthy families of type-B quasisymmetric functions. Next, we construct modules of the type-B$0$-Hecke algebra corresponding to type-B analogs of Schur functions and introduce a type-B analog of Schur Q-functions; we prove that these shifted domino functions expand positively in the type-B peak functions. We define a type-B analog of the $0$-Hecke–Clifford algebra, and we use this to provide representation–theoretic interpretations for both the type-B peak functions and the shifted domino functions. We consider the modules of this algebra induced from type-B$0$-Hecke modules constructed via ascent-compatibility and prove a general formula, in terms of type-B peak functions, for the type-B quasisymmetric characteristics of the restrictions of these modules.
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$, is a left weak Bruhat interval in the symmetric group $\mathfrak {S}_{|P|}$. We describe the permutations in $\Sigma _L(P)$ in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify $\Sigma _L(P)$’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the $0$-Hecke modules $\mathsf {M}_P$ associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of $\mathfrak {S}_{|P|}$. Using this characterization, we construct distinguished filtrations of $\mathsf {M}_P$ with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the $0$-Hecke modules $\mathsf {M}_P$ are also discussed.
In this paper, the authors introduce a new notion called the quantum wreath product, which is the algebra $B \wr _Q \mathcal {H}(d)$ produced from a given algebra B, a positive integer d and a choice $Q=(R,S,\rho ,\sigma )$ of parameters. Important examples that arise from our construction include many variants of the Hecke algebras, such as the Ariki–Koike algebras, the affine Hecke algebras and their degenerate version, Wan–Wang’s wreath Hecke algebras, Rosso–Savage’s (affine) Frobenius Hecke algebras, Kleshchev–Muth’s affine zigzag algebras and the Hu algebra that quantizes the wreath product $\Sigma _m \wr \Sigma _2$ between symmetric groups.
In the first part of the paper, the authors develop a structure theory for the quantum wreath products. Necessary and sufficient conditions for these algebras to afford a basis of suitable size are obtained. Furthermore, a Schur–Weyl duality is established via a splitting lemma and mild assumptions on the base algebra B. Our uniform approach encompasses many known results which were proved in a case by case manner. The second part of the paper involves the problem of constructing natural subalgebras of Hecke algebras that arise from wreath products. Moreover, a bar-invariant basis of the Hu algebra via an explicit formula for its extra generator is also described.
We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.
Let $p \geq 5$ be a prime number, and let $G = {\mathrm {SL}}_2(\mathbb {Q}_p)$. Let $\Xi = {\mathrm {Spec}}(Z)$ denote the spectrum of the centre Z of the pro-p Iwahori–Hecke algebra of G with coefficients in a field k of characteristic p. Let $\mathcal {R} \subset \Xi \times \Xi $ denote the support of the pro-p Iwahori ${\mathrm {Ext}}$-algebra of G, viewed as a $(Z,Z)$-bimodule. We show that the locally ringed space $\Xi /\mathcal {R}$ is a projective algebraic curve over ${\mathrm {Spec}}(k)$ with two connected components and that each connected component is a chain of projective lines. For each Zariski open subset U of $\Xi /\mathcal {R}$, we construct a stable localising subcategory $\mathcal {L}_U$ of the category of smooth k-linear representations of G.
Let $E/F$ be a quadratic unramified extension of non-archimedean local fields and $\mathbb H$ a simply connected semisimple algebraic group defined and split over F. We establish general results (multiplicities, test vectors) on ${\mathbb H} (F)$-distinguished Iwahori-spherical representations of ${\mathbb H} (E)$. For discrete series Iwahori-spherical representations of ${\mathbb H} (E)$, we prove a numerical criterion of ${\mathbb H} (F)$-distinction. As an application, we classify the ${\mathbb H} (F)$-distinguished discrete series representations of ${\mathbb H} (E)$ corresponding to degree $1$ characters of the Iwahori-Hecke algebra.
We give new descriptions of the Bruhat order and Demazure products of affine Weyl groups in terms of the weight function of the quantum Bruhat graph. These results can be understood to describe certain closure relations concerning the Iwahori–Bruhat decomposition of an algebraic group. As an application towards affine Deligne–Lusztig varieties, we present a new formula for generic Newton points.
Let G denote a possibly discrete topological group admitting an open subgroup I which is pro-p. If H denotes the corresponding Hecke algebra over a field k of characteristic p, then we study the adjunction between H-modules and k-linear smooth G-representations in terms of various model structures. If H is a Gorenstein ring, we single out a full subcategory of smooth G-representations which is equivalent to the category of all Gorenstein projective H-modules via the functor of I-invariants. This applies to groups of rational points of split connected reductive groups over finite and over non-Archimedean local fields, thus generalizing a theorem of Cabanes. Moreover, we show that the Gorenstein projective model structure on the category of H-modules admits a right transfer. On the homotopy level, the right derived functor of I-invariants then admits a right inverse and becomes an equivalence when restricted to a suitable subcategory.
We develop a method based on the Burau matrix to detect conditions on the linking numbers of braid strands. Our main application is to iterated exchanged braids. Unless the braid permutation fixes both braid edge strands, we establish under some fairly generic conditions on the linking numbers a ‘subsymmetry’ property; in particular at most two such braids can be mutually conjugate. As an addition, we prove that the Burau kernel is contained in the commutator subgroup of the pure braid group. We discuss also some properties of the Burau image.
Let G be a finite group. Let
$H, K$
be subgroups of G and
$H \backslash G / K$
the double coset space. If Q is a probability on G which is constant on conjugacy classes (
$Q(s^{-1} t s) = Q(t)$
), then the random walk driven by Q on G projects to a Markov chain on
$H \backslash G /K$
. This allows analysis of the lumped chain using the representation theory of G. Examples include coagulation-fragmentation processes and natural Markov chains on contingency tables. Our main example projects the random transvections walk on
$GL_n(q)$
onto a Markov chain on
$S_n$
via the Bruhat decomposition. The chain on
$S_n$
has a Mallows stationary distribution and interesting mixing time behavior. The projection illuminates the combinatorics of Gaussian elimination. Along the way, we give a representation of the sum of transvections in the Hecke algebra of double cosets, which describes the Markov chain as a mixture of Metropolis chains. Some extensions and examples of double coset Markov chains with G a compact group are discussed.
Let n be a nonnegative integer. For each composition
$\alpha $
of n, Berg, Bergeron, Saliola, Serrano and Zabrocki introduced a cyclic indecomposable
$H_n(0)$
-module
$\mathcal {V}_{\alpha }$
with a dual immaculate quasisymmetric function as the image of the quasisymmetric characteristic. In this paper, we study
$\mathcal {V}_{\alpha }$
s from the homological viewpoint. To be precise, we construct a minimal projective presentation of
$\mathcal {V}_{\alpha }$
and a minimal injective presentation of
$\mathcal {V}_{\alpha }$
as well. Using them, we compute
$\mathrm {Ext}^1_{H_n(0)}(\mathcal {V}_{\alpha }, \mathbf {F}_{\beta })$
and
$\mathrm {Ext}^1_{H_n(0)}( \mathbf {F}_{\beta }, \mathcal {V}_{\alpha })$
, where
$\mathbf {F}_{\beta }$
is the simple
$H_n(0)$
-module attached to a composition
$\beta $
of n. We also compute
$\mathrm {Ext}_{H_n(0)}^i(\mathcal {V}_{\alpha },\mathcal {V}_{\beta })$
when
$i=0,1$
and
$\beta \le _l \alpha $
, where
$\le _l$
represents the lexicographic order on compositions.
We study the compatibility of the action of the DAHA of type GL with two inverse systems of polynomial rings obtained from the standard Laurent polynomial representations. In both cases, the crucial analysis is that of the compatibility of the action of the Cherednik operators. Each case leads to a representation of a limit structure (the +/– stable limit DAHA) on a space of almost symmetric polynomials in infinitely many variables (the standard representation). As an application, we show that the defining representation of the double Dyck path algebra arises from the standard representation of the +stable limit DAHA.
Let G be a p-adic classical group. The representations in a given Bernstein component can be viewed as modules for the corresponding Hecke algebra—the endomorphism algebra of a pro-generator of the given component. Using Heiermann’s construction of these algebras, we describe the Bernstein components of the Gelfand–Graev representation for $G=\mathrm {SO}(2n+1)$, $\mathrm {Sp}(2n)$, and $\mathrm {O}(2n)$.