Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-28T16:48:10.397Z Has data issue: false hasContentIssue false

Effect of postharvest sugarcane straw amount and herbicides on Digitaria spp. control and green cane yield

Published online by Cambridge University Press:  28 October 2024

Rosilaine Araldi de Castro*
Affiliation:
Researcher, AgroQuatro-S Experimentation and Applied Agronomic Consultancy, São Paulo, Brazil
Sérgio Gustavo Quassi de Castro
Affiliation:
Researcher, Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
Lauren Maine Santos Menandro
Affiliation:
Researcher, Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
Marcos Antônio Kuva
Affiliation:
Researcher, Herbae-Agronomic Consultancy and Projects Ltd., São Paulo, Brazil
João Luis Nunes Carvalho
Affiliation:
Researcher, Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
*
Corresponding author: Rosilaine Araldi de Castro; Email: [email protected]

Abstract

New agronomic practices are emerging in the green cane system to utilize sugarcane (Saccharum officinarum L.) straw for energy cogeneration, which necessitates its removal from the soil surface. This study has three main objectives: (1) evaluate the population dynamics and composition of Jamaican crabgrass (Digitaria horizontalis Willd.) and large crabgrass [Digitaria sanguinalis (L.) Scop.] under different sugarcane straw amounts, with and without herbicide treatment; (2) assess the development of sugarcane under different straw amounts; and (3) determine the amount of sugarcane straw that should be kept on the soil surface after harvest to ensure that it does not compromise the chemical control for Digitaria spp. in ratoon cane in a green cane system. We conducted this research at two experimental sites, one at the beginning and the other during the middle of the harvest season, over a span of 2 yr. Our primary treatments consisted of different amounts of sugarcane straw after harvest on the soil surface (0, 5, 10, and 15 Mg ha−1), while secondary treatments included the herbicide application (sulfentrazone + tebuthiuron for the beginning of harvest season and isoxaflutole + tebuthiuron for the middle of harvest season). The Digitaria spp. exhibited higher density (four times more) and dry matter (two times more) in scenarios with a lower sugarcane straw amount (5 Mg ha−1) on the soil surface and no herbicide application. However, a higher straw amount (15 Mg ha−1) contributed to reduced Digitaria spp. infestation and to improved sugarcane yield. According to this research, it is essential to maintain at least 10 Mg ha−1 of sugarcane straw on the soil surface and remove only 5 Mg ha−1 for energy cogeneration.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Weed Science Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Vipan Kumar, Cornell University

References

Aquino, GS de, Medina, CC (2014) Productivity and biometric and physiological indices of sugarcane grown under different amounts of straw. Pesqui Agropecu Bras 49:173180 CrossRefGoogle Scholar
Aquino, GS de, Medina, C de C, Porteira Junior, AL, Santos, LO, Cunha, ACB, Kussaba, DAO, Santos Júnior, JH dos, Almeida, LF, Santiago, AD (2015) Root system and productivity of sugarcane ratoon associated to different quantities of straw. Pesqui Agropecu Bras 50:11501159 CrossRefGoogle Scholar
Araldi, R, Velini, ED, Girotto, M, Carbonari, CA, Sampaio, TF, Trindade, MLB (2011) Relationship between water consumption and herbicide absorption in weeds and sugarcane. Planta Daninha 29:10451051 CrossRefGoogle Scholar
Araldi de Castro, R, Castro, SGQ, Menandro, L, Kuva, M, Carvalho, J (2023) The relationship between straw and herbicide for controlling Ipomoea sp. in sugarcane ratoon. Adv Weed Sci 41:19 Google Scholar
Azania, CAM, Casagrande, AA, Rolim, JC (2001) Imazapic selectivity to sugarcane ratoons (Saccharum spp.). Planta Daninha 19:345350 CrossRefGoogle Scholar
Azania, CAM, Marques, RP, Azania, AAPM, Rolim, JC (2009) Overcoming dormancy of Ipomoea quamoclit and I. hederifolia seeds. Planta Daninha 27:2327 CrossRefGoogle Scholar
Ball-Coelho, B, Tiessen, H, Stewart, JWB, Salcedo, IH, Sampaio, EVSB (1993) Residue management effects on sugarcane yield and soil properties in northeastern Brazil. Agron J 85:10041008 CrossRefGoogle Scholar
Barbosa, JC, Maldonado Junior, W (2015) AgroEstat: System for Statistical Analysis of Agronomic Tests. Jaboticabal, SP, Brazil: Multipress, 396 pGoogle Scholar
Bunhola, TM, Segato, SV (2017) Preliminary assessment of new herbicides applied in preemergence in sugarcane plant. Nucleus 14:247266 CrossRefGoogle Scholar
Campos, CM, Milan, M, Siqueira, LFF (2008) Identification and analysis of the critical variables in the sugarcane production process. Engenharia Agrícola 28:554564 CrossRefGoogle Scholar
Canilha, L, Chandel, AK, Suzane dos Santos Milessi, T, Antunes, FAF, Luiz da Costa Freitas, W, das Graças Almeida Felipe, M, da Silva, SS (2012) Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J Biomed Biotechnol 2012:115 CrossRefGoogle ScholarPubMed
Carbonari, CA, Gomes, GLGC, Trindade, MLB, Silva, JRM, Velini, ED (2016) Dynamics of sulfentrazone applied to sugarcane crop residues. Weed Sci 64:201206 CrossRefGoogle Scholar
Carbonari, CA, Gomes, GLGC, Velini, ED (2010) Effects of different periods without rains occurrence in the efficacy of flumioxazin applied in soil and in the sugarcane mulch. Rev Bras Herbicidas 9:81 CrossRefGoogle Scholar
Carvalho, JLN, Cerri, C, Karlen, D (2019) Sustainable sugarcane straw special issue: considerations for Brazilian bioenergy production. BioEnergy Res 12:746748 CrossRefGoogle Scholar
Carvalho, JLN, Nogueirol, RC, Menandro, LMS, Bordonal, R de O, Borges, CD, Cantarella, H, Franco, HCJ (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:11811195 CrossRefGoogle Scholar
[CONAB] Companhia Nacional de Abastecimento (2023) Monitoring of Brazilian Crop Season (Sugarcane) Crop Season 2022, 2023, First Survey. https://www.conab.gov.br/info-agro/safras/cana. Accessed: August 2023Google Scholar
Correia, NM, Durigan, JC (2004) Emergency of weeds in covered soil with sugarcane straw. Planta Daninha 22:1117 CrossRefGoogle Scholar
Correia, NM, Durigan, JC, Klink, UP (2006) Influence of type and amount of crop residues on weed emergence. Planta Daninha 24:245253 CrossRefGoogle Scholar
Correia, NM, Kronka, B Jr (2010) Efficacy of herbicides applied during the dry and wet seasons for Euphorbia heterophylla control in sugarcane. Planta Daninha 28:853863 CrossRefGoogle Scholar
Dias, JLC de S, Silva Junior, AC da, Queiroz, JRG, Martins, D (2017) Herbicides selectivity in pre-budded seedlings of sugarcane. Arq Inst Biol (Sao Paulo) 84:e0112015 Google Scholar
Fagliari, JR, Júnior, RS de O, Constantin, J (2008) Methods for evaluating the selectivity of herbicides for sugarcane crop (Saccharum spp.). Acta Sci Agron 23:12291234 Google Scholar
Franchini, LHM, Constantin, J, Mendes, RR, Oliveira, RS Jr, Biffe, DF, Rios, FA, Matte, WD, Machado, FG (2020) Selectivity of herbicides applied in pre- and post-emergence of sugarcane with or without burned straw. Braz J Dev 6:3366633685 CrossRefGoogle Scholar
Galon, L, Nikpay, A, Ma, Y-L, Ferreira, EA, Munsif, F, Ziaee, M, Sharafizadeh, P, Concenco, G (2022) Weeds management in sugarcane: recent developments and future perspectives. Pages 361387 in Agro-industrial Perspectives on Sugarcane Production under Environmental Stress. Singapore: Springer Nature CrossRefGoogle Scholar
Gazziero, DLP (1995) Procedures for setting up, evaluating and analyzing herbicide experiments. Londrina, PR: Brazilian Weed Science Society, SBCPD. 42 pGoogle Scholar
Giraldeli, AL, Silva, AFM, Brito, FC de, Araújo, LDS, Pagenotto, ACV, Moraes, JP de, Victoria Filho, R (2018) Initial growth of sugarcane pre-sprouted seedlings in two types of application of herbicides. Rev Bras Herbicidas 17:588 CrossRefGoogle Scholar
Guimarães, GL (1987) Ecological impacts of the use of herbicides on the environmental. Série Técnica IPEF 4:115 Google Scholar
Hassuani, SJ, Leal, MRLV, Macedo, I de C (2005) Biomass Power Generation: Sugarcane Bagasse and Trash. Piracicaba, Brazil: Centro de Tecnologia Canavieira, United Nations Development Programme. 216 pGoogle Scholar
Hoshino, AT, Hata, FT, de Aquino, GS, Oliveira Menezes, A de Junior, Ventura, MU, Conti Medina, C de (2017) Mulching with sugarcane straw reduces weed density in sugarcane field. Int J Agric Biol 19:121124 CrossRefGoogle Scholar
Klein, AL, Felippe, GM (1991) Effect of light in the germination of weeds seed. Pesqui Agropecu Bras 26:955966 Google Scholar
Kuva, MA, Ferraudo, AS, Pitelli, RA, Alves, PLCA, Salgado, TP (2008a) Weed plant infestation patterns in raw sugarcane agricultural systems. Planta Daninha 26:549557 CrossRefGoogle Scholar
Kuva, MA, Gravena, R, Pitelli, RA, Christoffoleti, PJ, Alves, PLCA (2001) Interference periods of weeds in the sugarcane crop: III—Brachiaria decumbens and Panicum maximum . Planta Daninha 19:323330 CrossRefGoogle Scholar
Kuva, MA, Pitelli, RA, Alves, PLCA, Salgado, TP, Pavani, MCDM (2008b) Weed seedbank and its correlation with the established flora in no-burn sugarcane area. Planta Daninha 26:735744 CrossRefGoogle Scholar
Leavitt, MJ, Sheaffer, CC, Wyse, DL, Allan, DL (2011) Rolled winter rye and hairy vetch cover crops lower weed density but reduce vegetable yields in no-tillage organic production. HortScience 46:387395 CrossRefGoogle Scholar
Martins, D, Velini, ED, Martins, CC, Souza, LS de (1999) Broadleaf weed emergence in soil covered with sugarcane straw. Planta Daninha 17:151161 CrossRefGoogle Scholar
Martins, E da S, Mata, JF da, Martins, HL, Bianco, S, Alves, PL da CA, Erasmo, EAL, Ferreira, JH da S (2022) Periods of weed interference in green cane and burned sugarcane. Rev Ibero-Am Ciênc Ambient 13:1022 Google Scholar
Monquero, PA, Amaral, LR, Binha, DP, Silva, PV, Silva, AC, Martins, FRA (2008) Weed infestation maps under different sugarcane harvest systems. Planta Daninha 26:4755 CrossRefGoogle Scholar
Mossin, CB, Hijano, N, Nepomuceno, MP, Carvalho, LB, Alves, PLCA (2019) Interference relationships between weeds and sugarcane in the ‘plene’ system. Planta Daninha 37:e019190686 CrossRefGoogle Scholar
Negrisoli, E, Carbonari, CA, Corrêa, MR, Perim, L, Velini, ED, Toledo, REB, Victoria Filho, R, Rossi, CVS (2011) Effect of soil humidity conditions and germination depths of Brachiaria plantaginea and Digitaria spp. on tebuthiuron efficacy. Planta Daninha 29:10611068 CrossRefGoogle Scholar
Negrisoli, E, Velini, ED, Rossi, CVS, Correia, TM, Costa, AGF (2007) Tebuthiuron and straw cover association for weed control under the raw sugarcane system. Planta Daninha 25:621628 CrossRefGoogle Scholar
Negrisoli, RM, Negrisoli, MM, Cesco, VJS, Bianchi, L, Munhoz Gomes, D, Carbonari, CA, Velini, ED (2023) Glyphosate effect on Merremia aegyptia water transpiration and water use efficiency. Crop Prot 169:106237 CrossRefGoogle Scholar
Oliveira, FS de, Ferreira, M, Sentelhas, PC (2020) Favorability for the application of herbicides in the sugarcane crop based on agrometeorological criteria. Agrometeoros 28 Google Scholar
Queiroz, AF, Luís, A, Fernandes, T, Ferdinando, M, Lima, S (2022) Efficacy of adjuvants photoprotectors for herbicides in sugarcane. Am Sci Res J Eng Technol Sci 88:279291 Google Scholar
Raij, B, Andrade, J, Cantarella, H, Quaggio, J (2001) Chemical Analysis to Evaluate the Fertility of Tropical Soils. Campinas, Brazil: Instituto Agronomico de Campinas. 285 pGoogle Scholar
Reis, FC, Victória Filho, R, Andrade, MT, Barroso, AAM (2019) Use of herbicides in sugarcane in the São Paulo State. Planta Daninha 37, 10.1590/S0100-83582019370100064 CrossRefGoogle Scholar
Schedenffeldt, BF, Santos, PHV, Hirata, ACS, Soares, MR, Monquero, PA (2022) Influence of the density and distance of Digitaria horizontalis Willd in the biometric and nutritional parameters of pre-sprouted seedlings of sugarcane. Rev Caatinga 35:528536 CrossRefGoogle Scholar
Silva, GS da, Silva, AFM, Aiello, LHF, Toledo, REB, Ghirardello, GA, Victoria Filho, R (2019) Selectivity of sulfentrazone applied in pre-planting incorporated and in preemergence of sugarcane crop. Colloq Agrar 15:8594 Google Scholar
Silva, IAB, Kuva, MA, Alves, PLCA, Salgado, TP (2009) Interference of a weed community with predominance of Ipomoea hederifolia on sugar cane ratoon. Planta Daninha 27:265272 CrossRefGoogle Scholar
Silva Junior, ACD, Martins, CC, Martins, D (2016) Effects of sugarcane straw on grass weeds emergence under field conditions. BioScience 32:863872 Google Scholar
Soccol, CR, Vandenberghe, LPDS, Medeiros, ABP, Karp, SG, Buckeridge, M, Ramos, LP, Pitarelo, AP, Ferreira-Leitão, V, Gottschalk, LMF, Ferrara, MA (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:48204825 CrossRefGoogle ScholarPubMed
Soil Survey Staff (2014) Keys to Soil Taxonomy. 12th ed. Washington, DC: U.S. Department of Agriculture–Natural Resources Conservation Service. 372 pGoogle Scholar
Souza, JR, Perecin, D, Azania, CAM, Schiavetto, AR, Pizzo, IV, Candido, LS (2009) Tolerance of sugarcane cultivars to herbicides applied in post-emergence. Bragantia 68:941951 CrossRefGoogle Scholar
Takano, HK, Biffe, DF, Constantin, J, Oliveira Junior, RSD, Braz, GBP, Gemelli, A (2018) Dry season and soil texture affect the chemical control of monocotyledonous in sugarcane. Comun Sci 8:477485 CrossRefGoogle Scholar
Thornthwaite, CW, Mather, JR (1955) The Water Balance. Publications in Climatology. Centerton, NJ: Drexel Institute of Technology, Laboratory of Climatology. 104 pGoogle Scholar
Tofoli, GR, Velini, ED, Negrisoli, E, Cavenaghi, AL, Martins, D (2009) Performance of tebuthiuron applied on sugarcane straw. Planta Daninha 27:815821 CrossRefGoogle Scholar
Toledo, REB, Perim, L, Negrisoli, E, Corrêa, MR, Carbonari, CA, Rossi, CVS, Velini, ED (2009) Efficacy of the herbicide amicarbazone applied on straw or soil for weed control in sugarcane. Planta Daninha 27:319326 CrossRefGoogle Scholar
Toledo, REB, Silva Junior, AC, Negrisoli, RM, Negrisoli, E, Corrêa, MR, Rocha, MG da, Victória Filho, R (2015) Herbicides applied in preemergence to control Ipomoea spp. in sugarcane in dry season. Rev Bras Herbicidas 14:271 CrossRefGoogle Scholar
Toledo, REB, Victória Filho, R, Negrisoli, E, Correa, MDR (2017) Management of morning glory (Ipomoea hederifolia, Ipomoea nil, and Merremia aegyptia) with herbicides in raw sugarcane during dry seasons. Rev Bras Herbicidas 16:84 CrossRefGoogle Scholar
Tropaldi, L, Carbonari, C, Araldi, RA, Corniani, N, Girotto, M, Silva, IP (2015) Detection of crabgrass species tolerance to photosystem II inhibitor herbicides using fluorescence technique. Ciênc Rural 45:767773 CrossRefGoogle Scholar
Tropaldi, L, Carbonari, CA, Brito, IPFS de, Matos, AKA de, Moraes, CP de, Velini, ED (2021) Dynamics of clomazone formulations combined with sulfentrazone in sugarcane (Saccharum spp.) Straw Agric 11:854 Google Scholar
Velini, ED (1993) Evaluation of the effects of doses of the herbicide clomazone, applied in initial post-emergence, on the growth and productivity of sugarcane ratoon (Saccharum officinarum c.v. SP 71-1406). Society of Sugar and Alcohol Technicians of Brazil 12:3135 Google Scholar
Victoria-Filho, R, Christoffoleti, PJ (2004) Weed management and sugarcane yield. Visão Agríc 1:3237 Google Scholar
Yamauti, MS, Barroso, AAM, Giancotti, PRF, Squassoni, VL, Revolti, LTM, Alves, PL da CA (2011) Weed emergence in function of seed position and quantity of sugarcane straw. Sci Agrar 12:1–7Google Scholar