We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We investigate the properties of several bootstrap-based inference procedures for semiparametric density-weighted average derivatives. The key innovation in this paper is to employ an alternative asymptotic framework to assess the properties of these inference procedures. This theoretical approach is conceptually distinct from the traditional approach (based on asymptotic linearity of the estimator and Edgeworth expansions), and leads to different theoretical prescriptions for bootstrap-based semiparametric inference. First, we show that the conventional bootstrap-based approximations to the distribution of the estimator and its classical studentized version are both invalid in general. This result shows a fundamental lack of “robustness” of the associated, classical bootstrap-based inference procedures with respect to the bandwidth choice. Second, we present a new bootstrap-based inference procedure for density-weighted average derivatives that is more “robust” to perturbations of the bandwidth choice, and hence exhibits demonstrable superior theoretical statistical properties over the traditional bootstrap-based inference procedures. Finally, we also examine the validity and invalidity of related bootstrap-based inference procedures and discuss additional results that may be of independent interest. Some simulation evidence is also presented.
In this paper, we introduce a family of contrasts for parametric inference in ARCH models the volatility of which exhibits some degeneracy. We focus specifically on ARCH processes with a linear volatility (called LARCH processes), for which the Gaussian quasi-likelihood estimator may be inconsistent. Our approach generalizes that of Beran and Schützner (2009) and gives an interesting alternative to the WLSE used by Francq and Zakoïan (2010) for an autoregressive process with LARCH errors. The family of contrasts is indexed by a single parameter that controls the smoothness of an approximated quasi-likelihood function. Under mild conditions, the resulting estimators are shown to be strongly consistent and asymptotically normal. The optimal asymptotic variance is also given. For LARCH processes, an atypical result is obtained: under assumptions, we show that the limiting distribution of the estimators can be arbitrarily close to a Gaussian distribution supported on a line. Extensions to multivariate processes are also discussed.
This paper considers convolution equations that arise from problems such as measurement error and nonparametric regression with errors in variables with independence conditions. The equations are examined in spaces of generalized functions to account for possible singularities; this makes it possible to consider densities for arbitrary and not only absolutely continuous distributions, and to operate with Fourier transforms for polynomially growing regression functions. Results are derived for identification and well-posedness in the topology of generalized functions for the deconvolution problem and for some regression models. Conditions for consistency of plug-in estimation for these models are provided.
The Gibbs posterior is a useful tool for risk minimization, which adopts a Bayesian framework and can incorporate convenient computational algorithms such as Markov chain Monte Carlo. We derive risk bounds for the Gibbs posterior using some general nonasymptotic inequalities, which can be used to derive nearly optimal convergence rates and select models to optimally balance the approximation errors and the stochastic errors. These inequalities are formulated in a very general way that does not require the empirical risk to be a usual sample average over independent observations. We apply this framework to study the convergence rate of the GMM (generalized method of moments) risk and derive an oracle inequality for the ranking risk, where models are selected based on the Gibbs posterior with a nonadditive empirical risk.
We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér–Rao lower bound under appropriate conditions. In the case of nonregular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods.
This paper considers nonparametric estimation of autoregressive panel data models with fixed effects. A within-group type series estimator is developed and its convergence rate and asymptotic normality are derived. It is found that the series estimator is asymptotically biased and the bias could reduce the mean-square convergence rate compared with the cross-section cases. A bias corrected nonparametric estimator is developed.