We investigate the discrepancy between the distributions of the random variable
$\log L (\sigma , f \times f, X)$ and that of
$\log L(\sigma +it, f \times f)$, that is,
$$ \begin{align*} D_{\sigma} (T) := \sup_{\mathcal{R}} |\mathbb{P}_T(\log L(\sigma+it, f \times f) \in \mathcal{R}) - \mathbb{P}(\log L(\sigma, f \times f, X) \in \mathcal{R})|, \end{align*} $$
where the supremum is taken over rectangles
$\mathcal {R}$ with sides parallel to the coordinate axes. For fixed
$T>3$ and
$2/3 <\sigma _0 < \sigma < 1$, we prove that
$$ \begin{align*} D_{\sigma} (T) \ll \frac{1}{(\log T)^{\sigma}}. \end{align*} $$