Let
$a, b, c$ be relatively prime positive integers such that
${a}^{2} + {b}^{2} = {c}^{2} $. In 1956, Jeśmanowicz conjectured that for any positive integer
$n$, the only solution of
$\mathop{(an)}\nolimits ^{x} + \mathop{(bn)}\nolimits ^{y} = \mathop{(cn)}\nolimits ^{z} $ in positive integers is
$(x, y, z)= (2, 2, 2)$. In this paper, we consider Jeśmanowicz’ conjecture for Pythagorean triples
$(a, b, c)$ if
$a= c- 2$ and
$c$ is a Fermat prime. For example, we show that Jeśmanowicz’ conjecture is true for
$(a, b, c)= (3, 4, 5)$,
$(15, 8, 17)$,
$(255, 32, 257)$,
$(65535, 512, 65537)$.