Published online by Cambridge University Press: 24 August 2009
Introduction
In the previous chapter, we defined the space M[X, μ] of all homeomorphisms of a compact connected manifold X which preserve an OU probability measure μ. In addition, we proved the existence of a ‘Brown map’ ø : In → X, and used it to prove (Theorem 9.7) that typical measure theoretic properties V are also typical in the subspace M[X, ø (∂In), μ] of M[X, μ] consisting of homeomorphisms which pointwise fix the singular set K = ø(∂In). In the next section of this chapter we will show (Theorem 10.3) that this genericity result holds for the full space M[X, μ], although it cannot be established by simple bootstrapping arguments involving the Brown map.
The final section of this chapter considers the existence of fixed points for volume preserving homeomorphisms of the open unit n-cube. Recall that we proved earlier (Theorem 5.5) Montgomery's observation that for n = 2 all such homeomorphisms which are orientation preserving have a fixed point. We will negatively answer the question of Bourgin as to whether Montgomery's result can be extended to higher dimensions or to orientation reversing homeomorphisms. The main tool will be the Homeomorphic Measures Theorem (Theorem 9.1), stated in the previous chapter.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.