Skip to main content Accessibility help
×

Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.

Hostname: page-component-6587cd75c8-rlsgg Total loading time: 0 Render date: 2025-04-23T22:40:21.629Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  04 April 2025

Peter G. Baines
Affiliation:
University of Melbourne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abramowitz, M. & Stegun, I.A. (1968). Handbook of Mathematical Functions. Dover, 1045 pp. [p. 216.]Google Scholar
Alford, M.H., Girton, J.B., Voet, G., Carter, G.S., Mickett, B. & Klymak, J.M. (2013). Turbulent mixing and hydraulic control of abyssal water in the Samoan Passage. Geophys. Res. Lett. 40, 46684674. [p. 194.]Google Scholar
Akers, B. & Bokhove, O. (2008). Hydraulic flow through a channel contraction: multiple steady states. Phys. Fluids 20, 056601. [p. 48.]CrossRefGoogle Scholar
Akylas, T.R. (1984). On the excitation of long nonlinear water waves by a moving pressure distribution. J. Fluid Mech. 141, 455–66. [pp. 73, 94.]Google Scholar
Andrews, D.G. (1980). On the mean motion induced by transient inertio-gravity waves. Pageoph. 118, 177–88. [p. 226.]CrossRefGoogle Scholar
Armi, L. (1986). The hydraulics of two flowing layers of different densities. J. Fluid Mech. 163, 2758. [pp. 46, 137, 137, 138, 139.]Google Scholar
Armi, L. & Farmer, D.M. (1986). Maximal two-layer exchange through a contraction with barotropic net flow. J. Fluid Mech. 164, 2751. [pp. 156, 161, 162.]CrossRefGoogle Scholar
Armi, L. & Farmer, D.M. (1987). A generalization of the concept of maximal exchange in a strait. J. Geophys. Res. 92, 14679–80. [p. 162.]Google Scholar
Armi, L. & Farmer, D.M. (1988). The flow of Mediterranean water through the Strait of Gibraltar. Prog. Oceanog. 21, 1105. [p. 149.]Google Scholar
Armi, L. & Mayr, G.J. (2007). Continuously stratified flow across an Alpine crest with a pass: shallow and deep föhn. Quart. J. Roy. Met. Soc. 133, 459477. [p. 372.]CrossRefGoogle Scholar
Armi, L. & Mayr, G.J. (2011). The descending stratified flow and internal hydraulic jump in the lee of the Sierras. J. Appl. Met. Clim. 50, 19952011. [p. 497.]Google Scholar
Armi, L. &Mayr, G.J. (2015). Virtual and real topography for flows across mountain ranges. J. Appl. Met. & Climatol. 54, 723730. [p. 372.]CrossRefGoogle Scholar
Armi, L. & Riemenschneider, U. (2008). Two-layer hydraulics for a co-located crest and narrows. J. Fluid Mech. 615, 169184. [p. 140.]Google Scholar
Armi, L. & Williams, R. (1993). The hydraulics of a stratified fluid flowing through a contraction. J. Fluid Mech. 251, 355375. [pp. 146, 147, 147.]CrossRefGoogle Scholar
Bacmeister, J. (1987). Nonlinearity in transient, two-dimensional flow over topography. Ph.D. thesis, Princeton University, 187 pp. [p. 293.]Google Scholar
Bacmeister, J.T. & Pierrehumbert, R.T. (1988). On high-drag states of non-linear stratified flow over an obstacle. J. Atmos. Sci. 45, 6380. [pp. 236, 364, 365, 367.]Google Scholar
Bacmeister, J.T. & Schoeberl, M.R. (1989). Breakdown of vertically propagating two-dimensional gravity waves forced by orography. J. Atmos. Sci. 46, 21092134. [p. 372.]Google Scholar
Baines, P.G. (1971a). The reflection of internal/inertial waves from bumpy surfaces. J. Fluid Mech. 46, 273–91. [p. 217.]CrossRefGoogle Scholar
Baines, P.G. (1971b). The reflection of internal/inertial waves from bumpy surfaces. Part 2. Split reflection and diffraction. J. Fluid Mech. 49, 113131. [p. 217.]Google Scholar
Baines, P.G. (1977). Upstream influence and Long’s model in stratified flows. J. Fluid Mech. 82, 147–59. [pp. 314, 358, 359, 360, 360.]Google Scholar
Baines, P.G. (1979a). Observations of stratified flow over two-dimensional obstacles in fluid of finite depth. Tellus 31, 351–71. [pp. 305, 306, 309, 310, 311, 312, 313.]Google Scholar
Baines, P.G. (1979b). Observations of stratified flow past three-dimensional barriers. J. Geophys. Res. 84, 7834–8. [pp. 360, 362, 470, 471, 472, 483.]Google Scholar
Baines, P.G. (1984) A unified description of two-layer flow over topography. J. Fluid Mech. 146, 127–67. [pp. 109, 116, 117, 127.]CrossRefGoogle Scholar
Baines, P.G. (1988). A general method for determining upstream effects in stratified flow of finite depth over long two-dimensional obstacles. J. Fluid Mech. 188, 122. [p. 330, 332, 334, 334, 336.]Google Scholar
Baines, P.G. (1990). Upstream blocking and stratified flow hydraulics. In Stratified Flows. Proc. 3rd Int. Symp. on Stratified Flows, List, E.J. & Jirka, G.H. (eds), ASCE, 113–22. [p. 341, 468.]Google Scholar
Baines, P.G. (1994). Mechanisms for upstream effects in two-dimensional stratified flow. In Stably Stratified Flows: Flow and Dispersion over Topography. Castro, I. & Rockliff, N. (eds), Oxford University Press, 114. [p. 265.]Google Scholar
Baines, P.G. (1997). A fractal world of cloistered waves. Nature 388, 518–9. [p. 489.]Google Scholar
Baines, P.G. (2001). Mixing in flows down gentle slopes into stratified environments. J. Fluid Mech. 443, 237270. [pp. 182, 183, 184, 184.]Google Scholar
Baines, P.G. (2002). Two-dimensional plumes in stratified environments. J. Fluid Mech. 471, 315337. [p. 184.]CrossRefGoogle Scholar
Baines, P.G. (2005). Mixing regimes for the flow of dense fluid down slopes into stratified environments. J. Fluid Mech. 538, 245267. [pp. 181, 184, 185, 186, 187, 188.]Google Scholar
Baines, P.G. (2007). Internal tide generation by seamounts. Deep-Sea Research Part I 54(9), 14861508. [p. 504.]Google Scholar
Baines, P.G. (2008). Mixing in downslope flows in the ocean – plumes versus gravity currents. Atmosphere–Ocean, 46(4), 405419, doi:10.3137/AO925.2008. [pp. 188, 189.]Google Scholar
Baines, P.G. (2009). A model for the structure of the Antarctic slope front. Deep-Sea Research II, 56, 859873. [p. 504.]CrossRefGoogle Scholar
Baines, P.G. (2013). The dynamics of intrusions into a density-stratified crossflow. Phys. Fluids 25, 076601, 130. [p. 499, 499.]Google Scholar
Baines, P.G. (2016). Internal hydraulic jumps in two-layer systems. J. Fluid Mech. 787, 115. [pp. 104, 107, 108, 108, 109, 115, 330.]Google Scholar
Baines, P.G. & Davies, P.A. (1980). Laboratory studies of topographic effects in rotating and/or stratified fluids. In Orographic Effects in Planetary Flows, GARP publication no. 23, WMO / ICSU, 233–99. [p. 41.]Google Scholar
Baines, P.G. & Fraedrich, K. (1989). Topographic effects on the mean tropospheric flow patterns around Antarctica. J. Atmos. Sci. 46, 34013415. [p. 507.]2.0.CO;2>CrossRefGoogle Scholar
Baines, P.G. & Granek, H. (1990). Hydraulic models of deep stratified flows over topography. In The Physical Oceanography of Sea Straits, Pratt, L. (ed), Kluwer, 245–69. [pp. 292, 293, 318, 343, 352, 353, 368.]Google Scholar
Baines, P.G. & Grimshaw, R.H.J. (1979). Stratified flow over finite obstacles with weak stratification. Geophys. Astrophys. Fluid Dyn. 13, 317–34. [p. 282.]CrossRefGoogle Scholar
Baines, P.G. & Guest, F. (1988). The nature of upstream blocking in uniformly stratified flow over long obstacles. J. Fluid Mech. 188, 2345. [pp. 299, 316, 338, 339, 340, 342, 345, 346, 347, 348, 350.]CrossRefGoogle Scholar
Baines, P.G. & Hoinka, K.P. (1985). Stratified flow over two-dimensional topography in fluid of infinite depth: a laboratory simulation. J. Atmos. Sci. 42, 1614–30. [pp. 264, 268, 270, 271, 272, 275, 294, 360, 362, 367.]Google Scholar
Baines, P.G. & Johnson, E.R. (2016). Nonlinear topographic effects in two-layer flows. Front. Earth Sci. 4, 9. doi:10.3389/feart.2016.00009. [pp. 100, 109, 115, 116, 116.]Google Scholar
Baines, P.G. & Leonard, B.P. (1989). The effects of rotation on flow of a single layer over a ridge. Quart. J. Roy. Met. Soc. 115, 293308. [p. 54.]Google Scholar
Baines, P.G. & Manins, P.C. (1989). The principles of laboratory modelling of atmospheric flows over complex terrain. J. Appl. Met. 28, 1213–25. [pp. 506, 507.]Google Scholar
Baines, P.G. & Mitsudera, H. (1994). On the mechanism of shear flow instabilities. J. Fluid Mech. 276, 327–42. [pp. 245, 248.]CrossRefGoogle Scholar
Baines, P.G. & Sacks, S. (2014). Atmospheric internal waves generated by explosive volcanic eruptions. Geol. Soc. London, Memoirs 39, 153168. [p. 499.]Google Scholar
Baines, P.G. & Sacks, S. (2017). The generation and propagation of atmospheric internal waves caused by volcanic eruptions. Atmosphere 8, 60, 24 pages. [p. 499, 500.]Google Scholar
Baines, P.G. & Smith, R.B. (1993). Upstream stagnation points in stratified flow past obstacles. Dyn. Atmos. Oceans, 18, 105–13. [pp. 454, 461.]CrossRefGoogle Scholar
Baines, P.G. & Sparks, R.S.J. (2005). Dynamics of giant volcanic ash clouds from supervolcanic eruptions. Geophys. Res. Lett. 32, L24808, doi:10.1029/2005GL024597. [p. 499.]CrossRefGoogle Scholar
Baines, P.G. & Whitehead, J.A. (2003). On multiple states in single-layer flows. Phys. Fluids 15, 298307. [p. 41.]Google Scholar
Baines, P.G., Majumdar, S.J. & Mitsudera, H. (1996). The mechanics of the Tollmien– Schlichting wave. J. Fluid Mech. 312, 107124. [pp. 255, 258, 259, 260.]Google Scholar
Baines, P.G., Jones, M.J. & Sparks, R.S.J. (2008). The variation of large-magnitude volcanic ash cloud formation with source latitude. J. Geophys. Res. 113, D21204, doi:10.1029/2007JD009568. [p. 499.]Google Scholar
Bannister, D. & King, J. (2015). Föhn winds on South Georgia and their impact on regional climate. Weather 70, 324329. [p. 495.]Google Scholar
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics. Cambridge University Press, 615 pp. [pp. 3, 5, 84, 247, 266, 283, 434.]Google Scholar
Bauer, M.H., Mayr, G.J., Vergeiner, I. & Pichler, H. (2000). Strongly nonlinear flow over and around a three-dimensional mountain as a function of the horizontal aspect ratio. J. Atmos. Sci. 57, 39713991. [p. 484.]Google Scholar
Beljaars, A.C.M., Brown, A.R. & Wood, N. (2004). A new parametrization of turbulent orographic form drag. Quart. J. Roy. Met. Soc. 130, 1327–47. [pp. 511, 514.]Google Scholar
Bell, R.C. & Thompson, R.O.R.Y. (1980). Valley ventilation by cross winds. J. Fluid Mech. 96, 757–67. [pp. 382, 386.]Google Scholar
Bell, T.H. (1974). Effects of shear on the properties of internal gravity wave modes. Deutsche Hydrograph. Zeitschr. 21, 5762. [pp. 208, 209.]Google Scholar
Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241–70. [pp. 122, 127.]CrossRefGoogle Scholar
Benjamin, T.B. (1967). Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29, 559–92. [p. 120.]Google Scholar
Benjamin, T.B. (1968). Gravity currents and related phenomena. J. Fluid Mech. 31, 209–48. [pp. 173, 175.]Google Scholar
Benjamin, T.B. (1981). Steady flows drawn from a stably stratified reservoir. J. Fluid Mech. 106, 245–60. [p. 144, 147.]Google Scholar
Benjamin, T.B. & Lighthill, M.J. (1954). On cnoidal waves and bores. Proc. Roy. Soc. A, 224, 448–60. [pp. 62, 64.]Google Scholar
Benney, D.J. (1966). Long non-linear waves in fluid flows. J. Math. Phys. 45, 5263. [p. 120.]Google Scholar
Binnie, A.M. (1972). Hugoniot’s method applied to stratified flow through a contraction. J. Mech. Eng. Sci. 14, 72–3. [pp. 130, 144.]CrossRefGoogle Scholar
Binnie, A.M. & Orkney, J.C. (1955). Experiments on the flow of water from a reservoir through an open horizontal channel. II. The formation of hydraulic jumps. Proc. Roy. Soc. A, 230, 237–46. [p. 70.]Google Scholar
Blumen, W. (1965). A random model of momentum flux by mountain waves. Geophys. Publ. 26(2), 33pp. [p. 280.]Google Scholar
Blumen, W. (ed) (1990). Atmospheric Processes over Complex Terrain. Amer. Met. Soc. Met. Monographs. Vol. 23, No. 45, 323 pp. [p. 2.]Google Scholar
Bona, J.L., Pritchard, W.G. & Scott, L.R. (1981). An evaluation of a model equation for water waves. Phil. Trans. Roy. Soc. 302, 457510. [p. 59.]Google Scholar
Bonneton, P., Chomaz, J.-M. & Hopfinger, E.J. (1993). Internal waves produced by the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 2340. [p. 458.]CrossRefGoogle Scholar
Booker, J.R. & Bretherton, F.P. (1967). The critical layer for internal gravity waves in a shear flow. J. Fluid Mech. 27, 513–39. [pp. 230, 248.]Google Scholar
Borden, Z. & Meiburg, E. (2013a) Circulation-based models for Boussinesq internal bores. J. Fluid Mech. 726, R1, doi:10.1017/jfm.2013.239. [pp. 104, 105.]Google Scholar
Borden, Z. & Meiburg, E. (2013b). Circulation based models for Boussinesq gravity currents. Phys. Fluids 25, 101301; doi: 10.1063/1.4825035. [p. 173.]CrossRefGoogle Scholar
Bougeault, P., Jansa Clar, A., Benech, B., Carissimo, B., Pelon, J., & Richard, E. (1990). Momentum budget over the Pyrenees: the PYREX experiment. Bull. Amer. Met. Soc. 71, 806818. [p. 496.]2.0.CO;2>CrossRefGoogle Scholar
Bougeault, P., Benech, B., Bessemoulin, P., Carissimo, B., Jansa Clar, A., Pelon, J., Petitdidier, M. & Richard, E. (1997). PYREX: a summary of findings. Bull. Amer. Met. Soc. 78, 637650. [p. 496.]Google Scholar
Boyer, D.L. & Tao, L. (1987). Impulsively started, linearly stratified flow over long ridges. J. Atmos. Sci. 44, 2342. [p. 359.]2.0.CO;2>CrossRefGoogle Scholar
Boyer, D.L., Davies, P.A., Fernando, H.J.S. & Zhang, X. (1989). Linearly stratified flow past a horizontal circular cylinder. Phil. Trans. Roy. Soc. A 328, 501. [pp. 267, 274.]Google Scholar
Bretherton, F.P. (1966). The propagation of groups of internal gravity waves in a shear flow. Quart. J. Roy. Met. Soc. 92, 466–80. [pp. 7, 222, 226.]Google Scholar
Brighton, P.W.M. (1978). Strongly stratified flow past three-dimensional obstacles. Quart. J. Roy. Met. Soc. 104, 289307. [pp. 451, 476.]Google Scholar
Britter, R.E. & Linden, P.F. (1980). The motion of the front of a gravity current travelling down an incline. J. Fluid Mech. 99, 531543. [p. 180.]CrossRefGoogle Scholar
Broad, A.S., Porter, D. & Sewell, M.J. (1993). Shallow flow over general topography with applications to monotonic mountains. In Stably-Stratified Flows: Flow and Dispersion over Topography. Castro, I. & Rockliff, N. (eds), Oxford University Press, 133–8. [p. 31.]Google Scholar
Browand, F.K. & Winant, C.D. (1972) Blocking ahead of a cylinder moving in a stratified fluid: an experiment. Geophys. Fluid Dyn. 4, 2953. [p. 358.]Google Scholar
Burkill, J.C. (1956). The Theory of Ordinary Differential Equations. Oliver &Boyd, 102 pp. [p. 205.]Google Scholar
Byatt-Smith, J.G.B. (1971). The effects of laminar viscosity on the solution of the undular bore. J. Fluid Mech. 48, 3340. [p. 71.]CrossRefGoogle Scholar
Cairns, R.A. (1979). The role of negative energy waves in some instabilities of parallel flows. J. Fluid Mech. 92, 114. [p. 247.]CrossRefGoogle Scholar
Carpenter, J.R., Balmforth, J. & Lawrence, G.A. (2010). Identifying unstable modes in stratified shear layers. Phys. Fluids 22, 054104–1:3. [p. 245.]CrossRefGoogle Scholar
Carpenter, J.R., Tedford, E.W., Heifetz, E. & Lawrence, G.A. (2011). Instability in stratified shear flow: review of a physical interpretation based on interacting waves. Appl. Mech. Rev. 64, 060801–1:17. [p. 245.]CrossRefGoogle Scholar
Case, K.M. (1960). Stability of an idealised atmosphere. I. Discussion of results. Phys. Fluids 3, 149–54. [pp. 204, 208.]Google Scholar
Castro, I.P. & Snyder, W.H. (1988). Upstream motions in stratified flow. J. Fluid Mech. 187, 487506. [pp. 307, 360, 360.]CrossRefGoogle Scholar
Castro, I.P. & Snyder, W.H. (1993). Experiments on wave-breaking in stratified flow over obstacles. J. Fluid Mech. 255, 195211. [pp. 462, 466.]Google Scholar
Castro, I.P., Snyder, W.H. & Marsh, G.L. (1983). Stratified flow over three-dimensional ridges. J. Fluid Mech. 135, 261–82. [pp. 462, 482.]Google Scholar
Castro, I.P., Snyder, W.H. & Baines, P.G. (1990). Obstacle drag in stratified flow. Proc. Roy. Soc. A 429, 119–40. [pp. 282, 283, 363, 363, 364.]Google Scholar
Caulfield, C.-C.P. (1994). Multiple linear instability of layered stratified shear flow. J. Fluid Mech. 258, 255285. [p. 245.]Google Scholar
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford: Clarendon Press. [p. 243.]Google Scholar
Chapman, G.T. & Yates, L.A. (1991). Topology of flow separation on three-dimensional bodies. Appl. Mech. Rev. 44, 329–45. [pp. 437, 438.]Google Scholar
Chassignet, E.P., Cenedese, C., & Verron, J. (eds). Buoyancy-Driven Flows, Cambridge University Press, 436 pp. [p. 3.]Google Scholar
Chomaz, J.-M., Bonneton, P., Butet, A. & Perrier, M. (1992). Froude number dependence of the flow separation line on a sphere towed in a stratified fluid. Phys. Fluids A 4(2), 254–8. [p. 458.]Google Scholar
Chomaz, J.-M., Bonneton, P. & Hopfinger, E.J. (1993). The structure of the near wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. 254, 121. [p. 458.]Google Scholar
Chu, V.H. & Baddour, R.E. (1977). Surges, waves and mixing in two-layer density stratified flow. In Proc. 17th Int’l. Assn. Hydraul. Res., vol. 1, 303–10. p. 104.]Google Scholar
Chu, X., Zhao, J., Lu, X., Harvey, V.L., Jones, M.R., Becker, E., Chen, C., Fong, W., Yu, A.Z., Roberts, B.R. and Dörnbrack, A. (2018). Lidar observations of stratospheric gravity waves from 2011 to 2015 at McMurdo (77.84S, 166.69E), Antarctica: 2. Potential energy densities, lognormal distributions, and seasonal variations. J. Geophys. Res. Atmos. 123(15), 79107934. doi:10.1029/2017JD027386. [pp. 502.]Google ScholarPubMed
Clark, T.L. (1977). A small scale dynamical model using a terrain following coordinate transformation. J. Comput. Phys. 24, 136215. [pp. 293, 294, 374, 481.]Google Scholar
Clark, T.L. & Farley, R. D. (1984). Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting: A possible mechanism for gustiness. J. Atmos. Sci. 41, 329–50. [pp. 374, 376, 481.]Google Scholar
Clark, T.L. & Peltier, W.R. (1977). On the evolution and stability of finite-amplitude mountain waves. J. Atmos. Sci. 34, 1715–30. [p. 296.]2.0.CO;2>CrossRefGoogle Scholar
Clark, T.L. & Peltier, W.R. (1984). Critical level reflection and the resonant growth of non-linear mountain waves. J. Atmos. Sci. 41, 3122–34. [pp. 364, 367.]Google Scholar
Clarke, S.R. & Grimshaw, R.H.J. (1994). Resonantly generated internal waves in a contraction. J. Fluid Mech. 274, 139161. [pp. 141, 141.]Google Scholar
Coddington, E.A. & Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw–Hill, 429 pp. [p. 435.]Google Scholar
Cokelet, E.D. (1977). Steep gravity waves in water of uniform depth. Phil. Trans. Roy. Soc. A, 286, 183230. [pp. 64, 67.]Google Scholar
Cole, S.L. (1985). Transient waves produced by flow past a bump. Wave Motion 1, 579–87. [p. 72.]Google Scholar
Cornish, V. (1934). Ocean Waves and Kindred Geophysical Phenomena. Cambridge University Press, 164 pp. [p. 50.]Google Scholar
Cortes, A., Wells, M.G., Fringer, O.B., Arthur, R.S. & Ruenda, F.J. (2015). Numerical investigation of split flows by gravity currents into two-layered stratified water bodies. J. Geophys. Res. Oceans, 120, 52545271, doi:10.1002/2015JC010722. [p. 180.]CrossRefGoogle Scholar
Craik, A.D.D. (1985). Wave Interactions and Fluid Flows. Cambridge University Press, 333 pp. [pp. 228, 229, 247, 253.]Google Scholar
Crapper, G.D. (1959). A three-dimensional solution for waves in the lee of mountains. J. Fluid Mech. 6, 5176. [p. 397.]CrossRefGoogle Scholar
Crapper, G.D. (1962). Waves in the lee of a mountain with elliptical contours. Phil. Trans. Roy. Soc. A 254, 601–24. [p. 397.]Google Scholar
Dalziel, S.B. (1991). Two-layer hydraulics: a functional approach. J. Fluid Mech. 223, 135–63. [p. 164.]Google Scholar
Dalziel, S.B. (1992) Maximal exchange in channels with nonrectangular cross-sections. J. Phys. Oceanog. 22, 11881206. [p. 163.]Google Scholar
Dauxois, T., Joubaud, S., Odier, P. & Vennaille, A. (2018). Instabilities of internal wave beams. Ann. Rev. Fluid Mech. 50, 131156. [p. 260.]CrossRefGoogle Scholar
Davis, R.E. (1969). The two-dimensional flow of a stratified fluid over an obstacle. J. Fluid Mech. 36, 127–43. [p. 309.]Google Scholar
Davis, R.E. & Acrivos, A. (1967). The stability of oscillatory internal waves. J. Fluid Mech. 30, 723–36. [p. 359.]CrossRefGoogle Scholar
Ding, L., Calhoun, R.J. & Street, R.L. (2003). Numerical simulation of strongly stratified flow over a three-dimensional hill. Boundary-layer Meteorol. 107, 81114. [pp. 455, 476, 481.]Google Scholar
Doyle, J.D. & Durran, D.R. (2002). The dynamics of mountain-wave induced rotors. J. Atmos. Sci. 59, 186201. [pp. 274, 360.]Google Scholar
Doyle, J.D. & Durran, D.R. (2004). Recent developments in the theory of atmospheric rotors. Bull. Amer. Met. Soc. 85, 337342. [p. 274, 360.]Google Scholar
Drazin, P.G. (1961). On the steady flow of a fluid of variable density past an obstacle. Tellus 13, 239–51. [pp. 426, 474.]Google Scholar
Drazin, P.G. & Reid, W.H. (1981). Hydrodynamic Stability. Cambridge University Press, 525 pp. [pp. 50, 243, 254.]Google Scholar
Drazin, P.G. & Reid, W.H. (2004). Hydrodynamic Stability, Second Edition. Cambridge University Press, 628 pp. [p. 243.]CrossRefGoogle Scholar
Drazin, P.G. & Su, C.H. (1975). A note on long-wave theory of airflow over a mountain. J. Atmos. Sci. 32, 437–9. [p. 279.]2.0.CO;2>CrossRefGoogle Scholar
Dressler, R.F. (1949). Mathematical solution of the problem of roll-waves in inclined open channels. Comm. Pure Appl. Math. 2, 149–94. [pp. 50, 51.]CrossRefGoogle Scholar
Durran, D.R. (1986). Another look at downslope windstorms. Part 1: The development of analogs to supercritical flow in an infinitely deep continuously stratified fluid. J. Atmos. Sci. 43, 25272543. [p. 365, 367.]Google Scholar
Durran, D.R. (1992). Two-layer solutions to Long’s equation for vertically propagating mountain waves: how good is linear theory? Quart. J. Roy. Met. Soc. 118, 415–33. [p. 319.]Google Scholar
Durran, D.R. & Klemp, J.B. (1987). Another look at downslope winds. Part II: Nonlinear amplification beneath wave-overturning critical layers. J. Atmos. Sci. 44, 3402–12. [pp. 364, 367, 367.]Google Scholar
Eliassen, A. & Palm, E. (1961). On the transfer of energy in stationary mountain waves. Geophys. Publik. 22(3), 23 pp. [p. 223.]Google Scholar
Ellison, T.H. & Turner, J.S. (1959). Turbulent entrainment in stratified flows. J. Fluid Mech. 6, 423448. [p. 180.]Google Scholar
Engqvist, A. (1996). Self-similar multi-layer exchange flow through a contraction. J. Fluid Mech. 328, 4966. [pp. 166, 167, 168.]Google Scholar
Epifanio, C.C. & Durran, D.R. (2001). Three-dimensional effects in high-drag-state flows over long ridges. J. Atmos. Sci. 58, 10511064. [p. 484.]2.0.CO;2>CrossRefGoogle Scholar
Epifanio, C.C. & Rotunno, R. (2005). The dynamics of orographic wake formation in flows with upstream blocking. J. Atmos. Sci. 62, 31273150. [p. 484.]Google Scholar
Farmer, D.M. & Armi, L. (1986). Maximal two-layer exchange over a sill and through a combination of a sill and contraction with barotropic net flow. J. Fluid Mech. 164, 5376. [pp. 149, 163.]Google Scholar
Fernando, H.J.S. (1991). Turbulent mixing in stratified fluids. Ann. Rev. FLuid Mech. 23, 455493. [p. 184.]Google Scholar
Fernando, H.J.S. & 49 others. (2015). The MATERHORN – unravelling the intricacies of mountain weather. Bull. Amer. Met. Soc. 96, 19451967. doi.org/10.1175/BAMS-D-13-00131.1 [p. 498.]Google Scholar
Finnigan, J.J. (1988). Air flow over complex terrain. In Flow and Transport in the Natural Environment: Advances and Applications, Steffen, W.L.& Denmead, T. (eds), Springer-Verlag, 183229. [p. 266.]Google Scholar
Fornberg, B. & Whitham, G.B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena. Phil. Trans. Roy. Soc. A 289, 373404. [p. 66.]Google Scholar
Foster, M.R. & Saffman, P.G. (1970). The drag of a body moving transversely in a confined stratified fluid. J. Fluid Mech. 43, 407–18. [p. 360.]Google Scholar
Fritts, D.C. (1982). The transient critical level interaction in a Boussinesq fluid. J. Geophys. Res. 87, 79978016. [pp. 232, 232, 238.]Google Scholar
Fritts, D.C. & Alexander, J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41, 1-64. See also Rev. Geophys. 50, 3004, (2012). [p. 501.]CrossRefGoogle Scholar
Fritts, D.C. &Geller, M.A. (1976). Viscous stabilization of gravity wave-critical level flows. J. Atmos. Sci. 33, 2276–84. [p. 232.]Google Scholar
Fritts, D.C. & 36 others (2016). The deep propagating gravity wave experiment (DEEP-WAVE). Bull. Amer. Met. Soc. 97, 425453. doi.org/10.1175/BAMS-D-14-00269.1 [pp. 501.]CrossRefGoogle Scholar
Garner, S.T. (1995). Permanent and transient upstream effects in nonlinear stratified flow over a ridge. J. Atmos. Sci. 52, 227246. [p. 361.]2.0.CO;2>CrossRefGoogle Scholar
Garratt, J.R. (1992). The Atmospheric Boundary Layer. Cambridge University Press, 316 pp. [p. 511.]Google Scholar
Garrett, C. (2004). Frictional processes in straits. Deep-Sea Research II, 51, 393410. [p. 47.]Google Scholar
Garrett, C. & Kunze, E. (2007). Internal tide generation in the deep ocean. Ann. Rev. Fluid Mech. 39, 5787. [p. 504.]Google Scholar
Garrett, C.J.R. & Gerdes, F. (2003). Hydraulic control of homogeneous shear flows. J. Fluid Mech. 475, 163172. [p. 47.]CrossRefGoogle Scholar
Garrett, C.J.R. & Munk, W. (1972). Space-time scales of internal waves in the open ocean. Geophys. Fluid Dyn. 3(3), 225254. [p. 502.]Google Scholar
Garrett, C.J.R., Bormans, M. & Thompson, K. (1990). Is the exchange through the Strait of Gibraltar maximal or submaximal? In The Physical Oceanography of Sea Straits, Pratt, L.J. (ed), NATO ASI Series C, Vol. 318, 271–94. [p. 163.]Google Scholar
Gerdes, F., Garrett, C., & Farmer, D. (2002). On internal hydraulics with entrainment. J. Phys. Oceanog. 32, 11061111. [p. 48.]2.0.CO;2>CrossRefGoogle Scholar
Gill, A.E. (1982). Atmosphere–Ocean Dynamics. Academic Press, 662 pp. [pp. 4, 226, 277, 280.]Google Scholar
Girton, J.B. & Sanford, T.B. (2003). Descent and modification of the overflow plume in the Denmark Strait. J. Phys. Oceanog. 33, 13511364. [p. 189.]2.0.CO;2>CrossRefGoogle Scholar
Gjevik, B.J. (1980). Orographic effects revealed by satellite pictures: mesoscale flow phenomena. In Orographic Effects in Planetary Flows, WMO/ICSU, 301–16. [pp. 422, 467, 469.]Google Scholar
Gjevik, B.J. & Marthinsen, T. (1978). Three-dimensional lee wave pattern. Quart. J. Roy. Met. Soc. 104, 947–57. [p. 423.]Google Scholar
Gordon, A.L., Zambianchi, E., Orsi, A., Visbeck, M., Giulivi, C.F., Whitworth III, T., & Spezie, G. (2004). Energetic plumes over the western Ross Sea continental slope. Geophys. Res. Lett. 31, I.21302. [p. 189.]CrossRefGoogle Scholar
Gossard, E.E. & Hooke, W.H. (1975). Waves in the Atmosphere. Elsevier, 456 pp. [p. 217.]Google Scholar
Grace, W. (1991). Hydraulic jump in a fog bank. Aust. Met. Mag. 39, 205–9. [p. 140.]Google Scholar
Grant, A.L.M. &Mason, P.J. (1990). Observations of boundary-layer structure over complex terrain. Quart. J. Roy. Met. Soc. 116, 159–86. [pp. 489, 511.]Google Scholar
Greenslade, M.D. (1992). Strongly Stratified Airflow Over and Around Mountains. Ph.D. thesis, University of Leeds, 185 pp. [p. 477.]Google Scholar
Grimshaw, R.H.J. (1974). Internal gravity waves in a slowly varying, dissipative medium. Geophys. Fluid Dyn. 6, 131–48. [pp. 222, 226.]Google Scholar
Grimshaw, R.H.J. (2010). Transcritical flow past an obstacle. ANZIAM. J. 52, 125. [p. 77.]CrossRefGoogle Scholar
Grimshaw, R.H.J. & Helfrich, K.R. (2018). Internal solitary wave generation by tidal flow over topography. J. Fluid Mech. 839, 387407. [p. 77.]CrossRefGoogle Scholar
Grimshaw, R.H.J. & Smyth, N. (1986). Resonant flow of a stratified fluid over topography. J. Fluid Mech. 169, 429–64. [pp. 33, 73, 73, 75, 322.]Google Scholar
Grimshaw, R.H.J. & Yi, Z. (1991). Resonant generation of finite-amplitude waves by the flow of a uniformly stratified fluid over topography. J. Fluid Mech. 229, 603–28. [pp. 323, 324.]CrossRefGoogle Scholar
Grubi˘sić, V. & Billings, B. (2008) Summary of the Sierra Rotors Project wave and rotor events. Atmos. Sci. Let. 9, 176181. [p. 274.]CrossRefGoogle Scholar
Grubi˘sić, V. & Lewis, J.M. (2004). Sierra Wave Project revisited: 50 years later. Bull. Amer. Meteor. Soc. 85, 11271142. [p. 497.]CrossRefGoogle Scholar
Grubi˘sić, V. & Smolarkiewicz, P.K. (1997). The effect of critical levels on orographic flows: linear regime. J. Atmos. Sci. 54, 19431960. [p. 431.]Google Scholar
Grubi˘sić, V., Smith, R.B. & Schär, C. (1995). The effect of bottom friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci. 52, 19852005. [pp. 87, 491.]Google Scholar
Grubi˘sić, V., & coauthors, . (2008). The Terrain-Induced Rotor Experiment: an overview of the field campaign and some highlights of special observations. Bull. Amer. Meteor. Soc. 89, 15131533. [p. 497.]Google Scholar
Gu, L., & Lawrence, G.A. (2005). Analytical solution for maximal frictional two-layer exchange flow. J. Fluid Mech. 543, 117. [p. 171.]Google Scholar
Hammack, J., Scheffner, N. & Segur, H. (1989). Two-dimensional periodic waves in shallow water. J. Fluid Mech. 209, 567589. [pp. 94, 94.]Google Scholar
Hanazaki, H. (1988). A numerical study of three-dimensional stratified flow past a sphere. J. Fluid Mech. 192, 393419. [pp. 458, 459.]CrossRefGoogle Scholar
Hanazaki, H. (1989). Upstream advancing columnar disturbances in two-dimensional stratified flow of finite depth. Phys. Fluids A 1, 1976–87. [p. 309.]CrossRefGoogle Scholar
Hanazaki, H. (1994). On the three-dimensional internal waves excited by topography in the flow of a stratified fluid. J. Fluid Mech. 263, 293318. [p. 125.]CrossRefGoogle Scholar
Härtel, C., Meiburg, E. & Necker, F. (2000). Analysis and direct numerical simulation of the flow at a gravity current head. Part I. Flow topology and front speed for slip and non-slip boundaries. J. Fluid Mech. 418, 189212. [p. 173.]CrossRefGoogle Scholar
Hartman, R.J. (1975). Wave propagation in a stratified shear flow. J. Fluid Mech. 71, 89104. [p. 231, 232.]Google Scholar
Hayes, W.D. & Probstein, R.F. (1966). Hypersonic Flow Theory, 2nd edition. Academic Press, 602 pp. [p. 79.]Google Scholar
Haynes, P.H. & McIntyre, M.E. (1987). On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44, 828–41. [p. 11.]2.0.CO;2>CrossRefGoogle Scholar
Hazel, P. (1967). The effect of viscosity and heat conduction on internal gravity waves at a critical level. J. Fluid Mech. 30, 775–83. [p. 232.]Google Scholar
Henderson, F.M. (1966). Open Channel Hydraulics. Macmillan, 522 pp. [pp. 71, 89.]Google Scholar
Hines, C.O. (1960). Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 14411481. [p. 499.]CrossRefGoogle Scholar
Hocut, C.M., Liberzon, D. & Fernando, H.J.S. (2015). Separation of upslope flow over a uniform slope. J. Fluid Mech. 775, 266287. [pp. 194.]Google Scholar
Hogg, A.J., Nasr-Azadani, M.M., Ungarish, M. & Meiburg, E. (2016). Sustained gravity currents in a channel. J. Fluid Mech. 798, 853888. [p. 175, 179.]CrossRefGoogle Scholar
Hogg, A.McC. & Hughes, G.O. (2006). Shear flow and viscosity in single-layer hydraulics. J. Fluid Mech. 548, 431443. [p. 47.]CrossRefGoogle Scholar
Hogg, A.McC. & Killworth, P.D. (2004). Continuously stratified exchange flow through a contraction in a channel. J. Fluid Mech. 499, 257276. [p. 167, 169, 170.]Google Scholar
Hogg, A.M., Ivey, G.N. and Winters, K.B. (2001a). Hydraulics and mixing in controlled exchange flows. J. Geophys. Res. 106(C1), 959972. [p. 163.]Google Scholar
Hogg, , A.McC., Winters, K.B. & Ivey, G.N. (2001b). Linear internal waves and the control of stratified exchange flows. J. Fluid Mech. 447, 357375. [p. 163.]Google Scholar
Hoinka, K.P. (1985). Observations of the airflow over the Alps during a foehn event. Quart. J. Roy. Met. Soc. 111, 199224. [p. 424.]Google Scholar
Holmboe, J. (1962). On the behaviour of symmetric waves in stratified shear layers. Geofys. Publik. 24, 67113. [p. 248.]Google Scholar
Holyer, J.Y. & Huppert, H.E. (1980). Gravity currents entering a two-layer fluid. J. Fluid Mech. 100, 739767. [p. 177.]CrossRefGoogle Scholar
Hornung, H.G. (1986). Regular and Mach reflection of shock waves. Ann. Rev. Fluid Mech. 18, 3358. [p. 81.]Google Scholar
Houghton, D.D. & Isaacson, E. (1970). Mountain winds. Stud. Numer. Anal. 2, 2152. [p. 110.]Google Scholar
Houghton, D.D. & Kasahara, A. (1968). Non-linear shallow fluid flow over an isolated ridge. Comm. Pure Appl. Math. 21, 123. [pp. 41, 41.]Google Scholar
Howard, L.N. (1961). Note on a paper of John W. Miles. J. Fluid Mech. 10, 509–12. [p. 244.]Google Scholar
Huang, D.B., Sibul, O.J., Webster, W.C., Wehausen, J.V., Wu, D.M. & Wu, T.Y. (1982). Ships moving in the transcritical range. In Proc. Conf. on Behaviour of Ships in Restricted Waters, Vol. 2, (Varna, Bulgaria), 26.126.9. [pp. 71, 92.]Google Scholar
Hunt, J.C.R. & Snyder, W.H. (1980). Experiments on stably and neutrally stratified shear flow over a model three-dimensional hill. J. Fluid Mech. 96, 671704. [pp. 444, 447, 448, 450, 451, 477.]Google Scholar
Hunt, J.C.R., Abell, C.J., Peterka, J.A. & Woo, H. (1978). Kinematical studies of the flows around free or surface-mounted obstacles: applying topology to flow visualisation. J. Fluid Mech. 86, 179200. [pp. 434, 438, 438, 445, 446.]Google Scholar
Hunt, J.C.R., Richards, K.J. & Brighton, P.W.M. (1988). Stably stratified shear flow over low hills. Quart. J. Roy. Met. Soc. 114, 859–86. [p. 263.]Google Scholar
Hunt, J.C.R., Fernando, H.J.S. & Princevac, M. (2003). Unsteady thermally driven flows on gentle slopes. J. Atmos. Sci. 60, 21692182. [p. 194.]2.0.CO;2>CrossRefGoogle Scholar
Huppert, H.E. & Britter, R.E. (1982). The separation of hydraulic flow over topography, J. Hydraulics Div. ASCE 108, 15321539. [p. 48.]CrossRefGoogle Scholar
Huppert, H.E. & Miles, J.W. (1969). Lee waves in a stratified flow. Part 3. Semi-elliptical obstacle. J. Fluid Mech. 55, 481–96. [pp. 289, 290, 291, 462, 466.]Google Scholar
Huppert, H.E. & Simpson, J.E. (1980). The slumping of gravity currents. J. Fluid Mech. 99, 785–99. [pp. 173, 176.]CrossRefGoogle Scholar
Imberger, J. & Patterson, J.C. (1990). Physical limnology. Advances in Applied Mech. 27, 303475. [p. 285.]CrossRefGoogle Scholar
Ince, E.L. (1926). Ordinary Differential Equations. Reprinted by Dover (1956), 558 pp. [p. 208.]Google Scholar
Ippen, A.T. (1951). Mechanics of supercritical flow. Trans. Amer. Soc. Civ. Eng. 116, 268–95. [p. 91.]Google Scholar
Ivanov, V.V., Shapiro, G.I., Huthnance, J.M., Aleynik, D.L. & Golovin, P.N. (2004). Cascades of dense water around the world ocean. Progress in Oceanography 60, 4798. [p. 503.]CrossRefGoogle Scholar
Jagannathan, A., Winters, K.B. & Armi, L. (2017). Stability of stratified downslope flows with an overlying stagnant layer. J. Fluid Mech. 810, 392411. [p. 372.]CrossRefGoogle Scholar
Jagannathan, A., Winters, K.B. & Armi, L. (2019). Stratified flows over and around long dynamically tall mountain ridges. J. Atmos. Sci. 76, 12651287. [p. 369, 484.]Google Scholar
Janowitz, G.S. (1981). Stratified flow over a bounded obstacle in a channel of finite height. J. Fluid Mech. 110, 161170. [pp. 284, 304, 307.]CrossRefGoogle Scholar
Janowitz, G.S. (1984). Lee waves in three-dimensional stratified flow. J. Fluid Mech. 148, 97108. [pp. 395, 396, 397, 399, 400.]CrossRefGoogle Scholar
Jeffreys, H. & Jeffreys, B. (1962). Methods of Mathematical Physics. 3rd edition. Cambridge University Press, 716 pp. [p. 278.]Google Scholar
Jiang, Q. & Smith, R.B. (2000). V-waves, bow shocks, and wakes in supercritical hydrostatic flow. J. Fluid Mech. 406, 2753. [pp. 21, 23.]Google Scholar
Joseph, R.I. (1977). Solitary waves in a finite depth fluid. J. Phys. A: Math. Gen. 10, L225–227. [p. 121.]CrossRefGoogle Scholar
Kadomtsev, B.B. & Petviashvili, V.I. (1970). On the stability of solitary waves in weakly dispersing media. Sov. Phys. Dokl. 15, 539541. [p. 92.]Google Scholar
Karyampudi, V.M., Bacmeister, J.T., Koch, S.E., Rottman, J.W. & Kaplan, M.L. (1991). Generation of an undular bore by a downslope windstorm on the leeside of the Rockies. In Proc. 5th Conf. on Mesoscale Processes, Amer. Met. Soc., 17–22. [p. 190.]Google Scholar
Katsis, C. & Akylas, T.R. (1987). On the excitation of long non-linear water waves by a moving pressure distribution. Part 2. Three-dimensional effects. J. Fluid Mech. 177, 4965. [p. 93.]Google Scholar
Kelly, R.E. & Maslowe, S.A. (1970). The non-linear critical layer in a slightly stratified shear flow. Stud. Appl. Math. 49, 301–26. [p. 237.]Google Scholar
Killworth, P.D. (1992). On hydraulic control in a stratified fluid. J. Fluid Mech. 237, 605626. [p. 325.]Google Scholar
Kimura, F. & Manins, P.C. (1988). Blocking in periodic valleys. Boundary-layer Met. 44, 137–69. [pp. 381, 382, 384, 385, 386.]Google Scholar
Klemp, J.B. & Lilly, D.K. (1975). The dynamics of wave-induced downslope winds. J. Atmos. Sci. 32, 320–39. [pp. 375, 376.]Google Scholar
Klemp, J.B., Rotunno, R. & Skamarock, W. (1997). On the propagation of internal bores. J. Fluid Mech. 331, 81106. [p. 104.]CrossRefGoogle Scholar
Klymak, J.M., Legg, S.M. & Pinkel, R. (2010). High-mode stationary waves in stratified flow over large obstacles. J. Fluid Mech. 644, 321336. [p. 369.]Google Scholar
Koop, C.G. (1981). A preliminary investigation of the interaction of internal gravity wave potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44, 828–41. [p. 232.]Google Scholar
Koop, C.G. & Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech. 112, 225–51. [p. 121.]CrossRefGoogle Scholar
Koop, C.G. & McGee, B. (1986). Measurements of internal gravity waves in a continuously stratified shear flow. J. Fluid Mech. 172, 453–80. [p. 232, 233, 234.]CrossRefGoogle Scholar
Kubota, T., Ko, D.R.S. & Dobbs, L. (1978). Weakly non-linear, long internal gravity waves in fluid of infinite depth. AIAA J. Hydronautics 12, 157–65. [p. 121.]Google Scholar
Lamb, K.G. (1994). Numerical simulations of stratified inviscid flow over a smooth obstacle. J. Fluid Mech. 260, 122. [pp. 307, 324, 358, 364.]Google Scholar
Lamb, K.G. (2014). Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Ann. Rev. Fluid Mech. 46, 231254. [p. 503.]CrossRefGoogle Scholar
Lamb, K.G. & Wan, B. (1998). Conjugate flows and flat solitary waves for a continuously stratified fluid. Phys. Fluids 10, 20612079. [p. 107.]CrossRefGoogle Scholar
Lamb, V.R. & Britter, R.E. (1984). Shallow flow over an isolated obstacle. J. Fluid Mech. 147, 291313. [p. 82, 84.]Google Scholar
Lane-Serff, G.F. (1989). Heat Flow and Air Movement in Buildings. Ph.D. thesis, Cambridge University, 146 pp. [p. 163.]Google Scholar
Lane-Serff, G.F., Beal, L.M. & Hadfield, T.D. (1995). Gravity currents over obstacles. J. Fluid Mech. 292, 3953. [p. 175.]Google Scholar
Lane-Serff, G.F., Smeed, D.A. & Postlethwaite, C.R. (2000) Multi-layer hydraulic exchange flows. J. Fluid Mech. 416, 269296. [p. 164, 165.]Google Scholar
Laprise, R. (1993). An assessment of the WKBJ approximation to the vertical structure of linear mountain waves: implications for gravity wave drag parametrization. J. Atmos. Sci. 50, 1469–87. [p. 516.]Google Scholar
Laprise, R. & Peltier, W.R. (1989a). The linear stability of nonlinear mountain waves: implications for the understanding of severe downslope windstorms. J. Atmos. Sci. 46, 545–64. [pp. 289, 294, 367.]Google Scholar
Laprise, R. & Peltier, W.R. (1989b). The structure and energetics of transient eddies in a numerical simulation of breaking mountain waves. J. Atmos. Sci. 46, 565–85. [pp. 294, 295, 367.]Google Scholar
Lawrence, G.A. (1985). The hydraulics and mixing of two-layer flow over an obstacle. Univ. Calif. Berkeley Hydr. Eng. Lab. Report No. UCB/HEL-85/02. [pp. 127, 127.]Google Scholar
Lawrence, G.A. (1993). The hydraulics of steady two-layer flow over a fixed obstacle. J. Fluid Mech. 254, 605–33. [pp. 99, 127, 128, 137.]CrossRefGoogle Scholar
Lawrence, G.A., Lasheras, J.C. & Browand, F.K. (1990). Shear instabilities in stratified flow. In Stratified Flows: Proc. 3rd Int’l Symp. on Stratified Flows, List, E.J. & Jirka, G.H. (eds), ASCE, 1527. [p. 253.]Google Scholar
Lee, S-J., Yates, , G.T. & Wu, , T.Y. (1989). Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances. J. Fluid Mech. 199, 569–93. [p. 76.]CrossRefGoogle Scholar
Legg, S. (2012). Overflows and convectively driven flows. In Buoyancy-Driven Flows, Chassignet, E.P., Cenedese, C. & Verron, J. (eds), Cambridge University Press, 203239. [p. 372.]CrossRefGoogle Scholar
Leo, L.S., Thompson, M.Y., Di Sabatino, S. & Fernando, H.J.S. (2015). Stratified flow past a hill: dividing streamline concept revisited. Boundary-layer Meteorol. DOI 10.1007/s10546–015-0101-1. [p. 467.]Google Scholar
Leutbecher, M. & Volkert, H. (2000). The propagation of mountain waves into the stratosphere: quantitative evaluation of three-dimensional simulations. J. Atmos. Sci. 57, 30903108. [p. 501.]Google Scholar
Lied, N.T. (1964). Stationary hydraulic jumps in a katabatic flow near Davis, Antarctica, 1961. Aust. Met. Mag. 47, 4051. [p. 190.]Google Scholar
Lighthill, M.J. (1963). Introduction: Boundary layer theory. In Layers, Laminar Boundary, Rosenhead, L. (ed), Oxford University Press, 46113. [pp. 435, 437.]Google Scholar
Lighthill, M.J. (1965). Group velocity. J. Inst. Maths. Applics. 1, 128. [pp. 211, 284.]CrossRefGoogle Scholar
Lighthill, M.J. (1978). Waves in Fluids. Cambridge University Press, 504 pp. [pp. 26, 26, 28, 29, 30, 31, 60, 214, 278, 396, 415.]Google Scholar
Lighthill, M.J. & Whitham, G.B. (1955). On kinematic waves. I. Flood movement in long rivers. Proc. Roy. Soc. A, 229, 281316. [p. 49.]Google Scholar
Lilly, D.K. & Klemp, J.B. (1979). The effects of terrain shape on nonlinear hydrostatic mountain waves. J. Fluid Mech. 95, 241–61. [pp. 290, 290, 292.]Google Scholar
Lin, C.C. (1955). The Theory of Hydrodynamic Stability. Cambridge University Press, 155 pp. [p. 243.]Google Scholar
Lin, J.T. & Pao, Y.H. (1979). Wakes in stratified fluids: a review. Ann. Rev. Fluid Mech. 11, 317–38. [p. 456.]Google Scholar
Lin, Q., Lindberg, W.R., Boyer, D.L. & Fernando, H.J.S. (1992). Stratified flow past a sphere. J. Fluid Mech. 240, 315–54. [pp. 456, 457, 458, 458.]Google Scholar
Linden, P.F. (1999). The fluid mechanics of natural ventilation. Ann. Rev. Fluid Mech. 31, 201–38. [p. 510.]Google Scholar
Linden, P. (2012). Gravity currents – theory and laboratory experiments. In Buoyancy-Driven Flows, Chassignet, E.P., Cenedese, C. & Verron, J. (eds), Cambridge University Press, 1351. [p. 172.]CrossRefGoogle Scholar
Lindzen, R.S. (1974). Stability of a Helmholtz velocity profile in a continuously stratified, infinite Boussinesq fluid – applications to clear air turbulence. J. Atmos. Sci. 31, 1507–14. [p. 253.]2.0.CO;2>CrossRefGoogle Scholar
Lindzen, R.S. (1981). Turbulence and stress due to gravity wave and tidal breakdown. J. Geophys. Res. 86, 9707–14. [pp. 238, 516.]Google Scholar
Long, R.R. (1953). Some aspects of the flow of stratified fluids. I. A theoretical investigation. Tellus 5, 4258. [p. 287.]CrossRefGoogle Scholar
Long, R.R. (1954). Some aspects of the flow of stratified fluids. II. Experiments with a two-fluid system. Tellus 6, 97115. [pp. 41, 127.]Google Scholar
Long, R.R. (1955). Some aspects of the flow of stratified fluids. III. Continuous density gradient. Tellus 7, 341–57. [p. 315.]Google Scholar
Long, R.R. (1970). Blocking effects in flow over obstacles. Tellus 22, 471–80. [pp. 39, 41.]Google Scholar
Long, R.R. (1972). Finite amplitude disturbances in the flow of inviscid rotating and stratified fluids over obstacles. Ann. Rev. Fluid Mech. 4, 6992. [p. 39.]Google Scholar
Long, R.R. (1974). Some experimental observations of upstream disturbances in a two-fluid system. Tellus 26, 313–17. [p. 117.]Google Scholar
Lott, F. (1995). Comparison between the orographic response of the ECMWF model and the PYREX 1990 data. Quart. J. Roy. Meteor. Soc. 121, 13231348. [pp. 511, 514.]CrossRefGoogle Scholar
Lott, F. (2016). A new theory for downslope windstorms and trapped mountain waves. J. Atmos. Sci. 73, 35853597. [p. 376.]CrossRefGoogle Scholar
Lott, F. & Miller, M. (1997). A new subgrid-scale orographic drag parameterization: its formulation and nesting. Quart. J. Roy. Meteor. Soc. 123, 101127. [pp. 412, 514, 516, 519.]Google Scholar
MacCready, P. & Pawlak, G. (2001). Stratified flow along a corrugated slope: separation drag and wave drag. J. Phys. Oceanog. 31, 2824–39. [p. 503.]2.0.CO;2>CrossRefGoogle Scholar
Manins, P.C. & Sawford, B.L. (1979). Katabatic winds: a field case study. Quart. J. Roy. Met. Soc. 105, 1011–25. [pp. 180, 374.]CrossRefGoogle Scholar
Marques, G.M., Wells, M.G., Padman, L. & Ozgokmen, T.M. (2017). Flow splitting in numerical simulations of oceanic dense-water outflows. Ocean Modelling 113, 6684. [p. 188.]Google Scholar
Maslowe, S.A. & Redekopp, L.G. (1980). Long nonlinear waves in stratified shear flows. J. Fluid Mech. 101, 321–48. [p. 237.]Google Scholar
Mass, C.F. & Ferber, G.K. (1990). Surface pressure perturbations produced by an isolated mesoscale topographic barrier. Part I: General characteristics and dynamics. Mon. Wea. Rev. 118, 2579–96. [p. 493.]2.0.CO;2>CrossRefGoogle Scholar
Maxworthy, T., Leilich, J., Simpson, J.E. & Meiburg, E.H. (2002). The propagation of a gravity current into a linearly stratified fluid. J. Fluid Mech. 453, 371394. [pp. 176, 178.]Google Scholar
Mayer, F.T. & Fringer, O.B. (2017). An umabiguous definition of the Froude number for lee waves in the deep ocean. J. Fluid Mech. 831, R3, doi:10.1017/jfm.2017.701. [pp. 14, 267, 276.]Google Scholar
McEwan, A.D. (1971). Degeneration of resonantly excited standing internal gravity waves. J. Fluid Mech. 50, 431448. [p. 260.]Google Scholar
McEwan, A.D. (1973). Interactions between internal gravity waves and their traumatic effect on a continuous stratification. Boundary-layer Met., 5, 159–75. [pp. 238, 260.]Google Scholar
McEwan, A.D. & Baines, P.G. (1974). Shear fronts and an experimental stratified shear flow. J. Fluid Mech. 63, 257–72. [pp. 210, 269.]CrossRefGoogle Scholar
McFarlane, N.A. (1987). The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci. 44, 1775–800. [pp. 510, 515.]Google Scholar
McIntyre, M.E. (1972). On Long’s hypothesis of no upstream influence in uniformly stratified or rotating flow. J. Fluid Mech. 52, 209–43. [pp. 276, 281, 298, 321.]CrossRefGoogle Scholar
McIntyre, M.E. (1980). An introduction to the generalised Lagrangian-mean description of wave, mean-flow interaction. Pageoph. 118, 153–76. [p. 226.]CrossRefGoogle Scholar
Melville, W.K. & Helfrich, K.R. (1987). Transcritical two-layer flow over topography. J. Fluid Mech. 178, 3152. [pp. 121, 124, 124, 125, 126.]CrossRefGoogle Scholar
Mied, R.P. & Dugan, J.P. (1975). Internal wave reflection by a velocity shear and density anomaly. J. Phys. Oceanog. 5, 279–87. [p. 215.]Google Scholar
Miles, J.W. (1961). On the stability of heterogeneous shear flows. J. Fluid Mech. 10, 496508. [pp. 208, 244.]CrossRefGoogle Scholar
Miles, J.W. (1968). Lee waves in a stratified flow. Part 2. Semi-circular obstacle. J. Fluid Mech. 33, 803–14. [pp. 287, 288, 289, 314.]CrossRefGoogle Scholar
Miles, J.W. (1969). Waves and wave drag in stratified flows. Proc. 12th lnt. Cong. Appl. Mech., Stanford, Calif., Hetenyi, M. & Vincenti, W.G. (eds), Springer-Verlag. [p. 15.]Google Scholar
Miles, J.W. (1979). On internal solitary waves. Tellus 31, 456–62. [p. 121.]Google Scholar
Miles, J.W. (1980). Solitary waves. Ann. Rev. Fluid Mech. 12, 1143. [pp. 60, 81.]Google Scholar
Miles, J.W. (1981). On internal solitary waves. II. Tellus 33, 397401. [p. 124.]CrossRefGoogle Scholar
Milewski, P.A. & Tabak, E.G. (2015). Conservation lawmodelling of entrainment in layered hydrostatic flows. J. Fluid Mech. 772, 272–94. [p. 109.]Google Scholar
Miller, P.P. & Durran, D.D. (1991). On the sensitivity of downslope windstorms to the asymmetry of the mountain profile. J. Atmos. Sci. 48, 1457–73. [p. 360.]Google Scholar
Miller, M.J., Palmer, T.N. & Swinbank, R. (1989). Parametrisation and influence of subgridscale orography in general circulation and numerical weather prediction models. Meteorol. Atmos. Phys. 40, 84109. [p. 516.]CrossRefGoogle Scholar
Miller, S.D., Straka III, W.C., Yue, J., Smith, S.M., Alexander, M.J., Hoffman, L., Setvak, M. and Partain, P.T. (2015). Upper atmospheric gravity wave details revealed in nightglow satellite imagery. Proc. Nat. Acad. Sci. 112, 67286735. [p. 502.]Google ScholarPubMed
Milne-Thomson, L.M. (1960). Theoretical Hydrodynamics 4th edition. Macmillan, 660 pp. [p. 441.]Google Scholar
Mitchell, R.M., Cechet, R.P., Turner, P.J. & Elsum, C.C. (1990). Observation and interpretation of wave clouds over Macquarie Island. Quart. J. Roy. Met. Soc. 116, 741–52. [p. 421.]Google Scholar
Monaghan, J.J. (2007). Gravity current interaction with interfaces. Annu. Rev. Fluid Mech. 39, 245261. [p. 180.]CrossRefGoogle Scholar
Morse, P.M. & Feshbach, H. (1953). Methods of Theoretical Physics, Parts I & II. McGraw-Hill, 1978 pp. [pp. 20, 301.]Google Scholar
Morton, B.R. (1984). The generation and decay of vorticity. Geophys. Astrophys. Fluid Dyn. 28, 277308. [p. 483.]CrossRefGoogle Scholar
Morton, B.R., Taylor, G.I. & Turner, J.S. (1956). Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. A 234, 123. [pp. 180, 184, 185.]Google Scholar
Needham, D.J. & Merkin, J.H. (1984). On roll waves down an open inclined channel. Proc. Roy. Soc. A, 394, 259–78. [p. 50.]Google Scholar
Newley, T.M.J., Pearson, H.J. & Hunt, J.C.R. (1991). Stably stratified flow through a group of obstacles. Geophys. Astrophys. Fluid Dyn. 58, 147–71. [p. 487.]Google Scholar
Nielsen, M.H., Pratt, L. & Helfrich, K. (2004). Mixing and entrainment in hydraulically driven stratified sill flows. J. Fluid Mech. 515, 415443. [pp. 47, 48, 336.]CrossRefGoogle Scholar
Ogden, K.A. & Helfrich, K.R. (2016). Internal hydraulic jumps in two-layer flows with upstream shear. J. Fluid Mech. 789, 6492. [p. 109.]Google Scholar
Ogura, Y. & Phillips, N.A. (1962). Scale analysis of deep and shallow convection in the atmosphere. J. Atmos. Sci. 19, 173–9. [p. 6.]2.0.CO;2>CrossRefGoogle Scholar
Olafsson, H. & Bougeault, P. (1996). Nonlinear flow past an elliptic mountain ridge. J. Atmos. Sci. 53, 24652489. [p. 484.]Google Scholar
Ono, H. (1975). Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 1082–91. [p. 120.]Google Scholar
Orlanski, I. & Bryan, K. (1969). Formation of thermocline step structure by large-amplitude internal gravity waves. J. Geophys. Res. 74, 6975–83. [p. 238.]Google Scholar
Orlanski, I. & Ross, B.B. (1977). The circulation associated with a cold front. Part I: Dry case. J. Atmos. Sci. 34, 1619–33. [p. 293.]2.0.CO;2>CrossRefGoogle Scholar
Orr, A., Marshall, G.J., Hunt, J.C.R., Sommeria, J., Wang, C-G., van Lipzig, N.P.M., Cresswell, D. & King, J.C. (2008). Characteristics of summer airflow over the Antarctic Peninsula in response to recent strengthening of westerly circumpolar winds. J. Atmos. Sci. 65, 13961413. [p. 495.]CrossRefGoogle Scholar
Palmer, T.N., Shutts, G.J. & Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical prediction models through an orographic gravity wave drag parametrisation. Quart. J. Roy. Met. Soc. 112, 1011–39. [pp. 2, 510, 515.]Google Scholar
Peltier, W.R. & Clark, T.L. (1979). The evolution and stability of finite-amplitude mountain waves. Part II: Surface wave drag and severe downslope windstorms. J. Atmos. Sci. 36, 1498–529. [pp. 296, 363.]Google Scholar
Peltier, W.R. & Clark, T.L. (1983). Nonlinear mountain waves in two and three spatial dimensions. Quart. J. Roy. Met. Soc. 109, 527–48. [p. 367, 368.]Google Scholar
Peltier, W.R. & Scinocca, J.F. (1990). The origin of severe downslope windstorm pulsations. J. Atmos. Sci. 47, 2853–70. [pp. 374, 377.]2.0.CO;2>CrossRefGoogle Scholar
Peregrine, D.H. (1966). Calculations of the development of an undular bore. J. Fluid Mech. 25, 321–30. [pp. 66, 68.]Google Scholar
Peregrine, D.H. (1968). Long waves in a uniform channel of arbitrary cross-section. J. Fluid Mech. 32, 353–65. [p. 59.]Google Scholar
Perry, A.E. & Fairlie, B.D. (1974). Critical points in flow patterns. Adv. Geophys. B 18, 299315. [p. 435.]CrossRefGoogle Scholar
Peters, H., Johns, W.E., Bowers, A.S. & Fratantoni, D.M. (2005). Mixing and entrainment in the Red Sea outflow plume. Part 1: plume structure. J. Phys. Oceanog. 35(5), 569583. [p. 189.]Google Scholar
Pettre, P. & Andre, J.-C. (1991). Surface pressure change through Loewe’s phenomena and katabatic flow jumps: study of two cases in Adelie Land, Antarctica. J. Atmos. Sci. 48, 557–71. [p. 190.]Google Scholar
Phillips, D.S. (1984). Analytical surface pressure and drag for linear hydrostatic flow over three-dimensional elliptical mountains. J. Atmos. Sci. 41, 1073–84. [pp. 394, 410, 413.]Google Scholar
Phillips, O.M. (1966). The Dynamics of the Upper Ocean. Cambridge University Press, 261 pp. [p. 232, 260.]Google Scholar
Phillips, O.M. (1977). The Dynamics of the Upper Ocean, 2nd edition. Cambridge University Press, 336 pp. [pp. 12, 27, 238.]Google Scholar
Pierrehumbert, R.T. & Wyman, B. (1985). Upstream effects of mesoscale mountains. J. Atmos. Sci. 42, 9771003. [pp. 293, 296, 361, 361, 362, 362, 367.]Google Scholar
Pitts, R.O. & Lyons, T.J. (1989). Airflow over a two-dimensional escarpment. 1: Observations. Quart. J. Roy. Met. Soc. 115, 965–81. [p. 424.]Google Scholar
Plumb, R.A. (1977). The interaction of two internal waves with the mean flow: implications for the theory of the quasi-biennial oscillation. J. Atmos. Sci. 34, 18471858. [p. 226.]2.0.CO;2>CrossRefGoogle Scholar
Plumb, R.A. &McEwan, A.D. (1978). The instability of a forced standing wave in a viscous stratified fluid: a laboratory analogue of the quasi-biennial oscillation. J. Atmos. Sci. 35, 1827–39. [pp. 226, 233.]Google Scholar
Pratt, L.J. (1983). A note on non-linear flow over obstacles. Geophys. Astrophys. Fluid Dyn. 24, 63–8. [p. 41.]Google Scholar
Pratt, L.J. (1984). Nonlinear flow with multiple obstructions. J. Atmos. Sci. 41, 1214–25. [pp. 77, 78.]Google Scholar
Pratt, L.J. (1986). Hydraulic control of sill flow with bottom friction. J. Phys. Oceanog. 16, 1970–80. [p. 47.]Google Scholar
Pratt, L. & Helfrich, K. (2005). Generalized conditions for hydraulic criticality of oceanic overflows. J. Phys. Oceanog. 35, 17821800. [p. 325.]CrossRefGoogle Scholar
Pratt, L.J. & Whitehead, J.A. (2008). Rotating Hydraulics: Nonlinear Topographic Effects in the Ocean and Atmosphere. Springer, 589 pp. [pp. 2, 48.]Google Scholar
Pratt, L.J., Deese, H.E., Murray, S.P. & Johns, W. (2000). Continuous dynamical modes having arbitrary cross-sections, with application to the Bab al Mandab. J. Phys. Oceanog. 30, 25152534. [p. 166.]2.0.CO;2>CrossRefGoogle Scholar
Prigogine, I. (1980). From Being to Becoming: Time and Complexity in the Physical Sciences. Freeman, 272 pp. [p. 484.]Google Scholar
Prigogine, I. & Stengers, I. (1984). Order out of Chaos – Man’s New Dialogue with Nature. Bantam Books, 349 pp. [p. 484.]Google Scholar
Queney, P. (1948). The problem of airflow over mountains: a summary of theoretical studies. Bull. Amer. Met. Soc. 29, 1626. [pp. 279, 281.]Google Scholar
Rasmussen, R.M., Smolarkiewicz, P. & Warner, J. (1989). On the dynamics of Hawaiian cloud bands: comparison of model results with observations and island climatology. J. Atmos. Sci. 46, 1589–608. [p. 490.]Google Scholar
Rayleigh, Lord, (1896). The Theory of Sound, Vol. II. Reproduced by Dover (1948), 504 pp. [p. 246.]Google Scholar
Richard, E., Mascart, P. & Nickerson, E. (1989). The role of surface friction in downslope windstorms. J. Applied Met. 28, 241–51. [p. 360.]2.0.CO;2>CrossRefGoogle Scholar
Ripepe, M., Barfucci, G., De Angelis, S., Delle Donne, D., Lacanna, G. & Marchetti, E. (2016). Modeling volcanic eruption parameters by near-source internal gravity waves. Sci. Rep. 6, 36727; doi: 10.1038/srep36727. [p. 499.]Google ScholarPubMed
Rooney, G.G. & Devenish, B.J. (2014). Plume rise and spread in a linearly stratified environment. Geophys. Astrophys. Fluid Dyn. 108, 168190. [p. 499.]CrossRefGoogle Scholar
Rottman, J.W. & Simpson, J.E. (1983). Gravity currents produced by instantaneous releases of a heavy fluid in a rectangular channel. J. Fluid Mech. 135, 95110. [p. 176.]Google Scholar
Rottman, J.W. & Simpson, J.E. (1989). The formation of internal bores in the atmosphere: a laboratory model. Quart. J. Roy. Meteorol. Soc. 115, 941963. [p. 176.]Google Scholar
Rottman, J.W., Broutman, D. & Grimshaw, R. (1996). Numerical simulations of uniformly stratified fluid flow over topography. J. Fluid Mech. 306, 130. [p. 364.]Google Scholar
Rouse, H. & Ince, S. (1957). History of Hydraulics. Iowa Institute of Hydraulic Research, State Univ. Iowa, 269 pp. [p. 14.]Google Scholar
Sachsperger, J., Serafin, S. & Grubi˘sić, V. (2016). Dynamics of rotor formation in uniformly stratified two-dimensional flow over a mountain. Quart. J. Roy. Meteorol. Soc. 142 12011212. [p. 360.]Google Scholar
Sachsberger, J., Serafin, S., Grubi˘sić, V., Stiperski, I. & Paci. A. (2017). The amplitude of lee waves on the boundary-layer inversion. Quart. J. Roy. Meteorol. Soc. 143, 2736. [p. 360.]Google Scholar
Sandu, I., Zadra, A. &Wedi, N. (2016). Impact of orographic drag on forecast skill. ECMWF Newsletter 150, 1824. [p. 519.]Google Scholar
Sarkar, S. & Scotti, A. (2017). From topographic internal waves to turbulence. Ann. Rev. Fluid Mech. 49, 195220. [p. 504.]CrossRefGoogle Scholar
Schär, C. (1993). A generalisation of Bernoulli’s theorem. J. Atmos. Sci. 50, 1437–43. [p. 11.]Google Scholar
Schär, C. & Durran, D.R. (1997). Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci. 54, 534554. [p. 484.]Google Scholar
Schär, C. & Smith, R.B. (1993a). Shallow water flow past isolated topography. Part 1: Vorticity production and wake formation. J. Atmos. Sci. 50, 1373–400. [pp. 82, 83, 84, 85, 492.]Google Scholar
Schär, C. & Smith, R.B. (1993b). Shallow water flow past isolated topography. Part II: Transition to vortex shedding. J. Atmos. Sci. 50, 1401–12. [pp. 84, 464, 492.]Google Scholar
Schlichting, H. (1968). Boundary-Layer Theory. McGraw–Hill, 817 pp. [p. 259.]Google Scholar
Schlichting, H. & Gersten, K. (2003). Boundary-Layer Theory. Springer-Verlag, 801 pp. [p. 254.]Google Scholar
Schubauer, G.B. & Skramstad, H.K. (1947). Laminar boundary-layer oscillations and transition on a flat plate. J. Res. Nat. Bur. Stand. 38, 251292. [p. 254.]Google Scholar
Schwartz, L.W. & Fenton, J.D. (1982). Strongly nonlinear waves. Ann. Rev. Fluid Mech. 14, 3960. [p. 64.]CrossRefGoogle Scholar
Scinocca, J.F. & Peltier, W.R. (1989). Pulsating downslope windstorms. J. Atmos. Sci. 46, 2885–914. [pp. 374, 377, 378.]Google Scholar
Scinocca, J.F. & Peltier, W.R. (1991). On the Richardson number dependence of nonlinear critical-layer flow over localised topography. J. Atmos. Sci. 48, 1560–72. [pp. 364, 367.]Google Scholar
Scorer, R.S. (1949). Theory of waves in the lee of mountains. Quart. J. Roy. Met. Soc. 75, 4156. [p. 217.]Google Scholar
Scorer, R.S. (1986). Cloud Investigation by Satellite. Ellis Horwood, 312 pp. [p. 419.]Google Scholar
Scorer, R.S. (1990). The Satellite as Microscope. Ellis Horwood, 266 pp. [p. 419.]Google Scholar
Segur, H. & Hammack, J.L. (1982). Soliton models of long internal waves. J. Fluid Mech. 118, 285304. [p. 121.]Google Scholar
Shapiro, G.I., Huthnance, J.M. & Ivanov, V.V. (2003). Dense water cascading off the continental shelf. J. Geophysical Res., 108, C12:art no. 3390. [p. 503.]Google Scholar
Sharman, R.D. & Wurtele, M.G. (1983). Ship waves and lee waves. J. Atmos. Sci. 40, 396427. [pp. 418, 418.]Google Scholar
Sheppard, P.A. (1956). Airflow over mountains. Quart. J. Roy. Met. Soc. 82, 528–9. [p. 454.]Google Scholar
Shutts, G. & Broad, A. (1993). A case study of lee waves over the Lake District, Northern England. Quart. J. Roy. Met. Soc. 119, 377408. [p. 425.]Google Scholar
Siddall, M., Smeed, D.A., Matthieson, S. & Rohling, E.J. (2002). Modelling the seasonal cycle of the exchange flow in Bab El Mandab (Red Sea). Deep-Sea Res. I 49, 15511569. [p. 166.]Google Scholar
Silver, Z., Dimitrova, R., Zsedrovits, T., Baines, P.G. and Fernando, H.J.S. (2020). Simulation of stably stratified flow in complex terrain: flow structures and dividing streamline. Environmental Fluid Mech. 20, 12811311, doi:10.1007/s10652-018-9648-y. [p. 498.]Google Scholar
Simard, A. & Peltier, W.R. (1982). Ship waves in the lee of isolated topography. J. Atmos. Sci. 39, 587609. [p. 415.]Google Scholar
Simpson, J.E. (1997). Gravity Currents: in the Environment and the Laboratory. Ellis Horwood, 244 pp. [pp. 172, 173, 173, 176.]Google Scholar
Simpson, J.E. & Britter, R.E. (1979). The dynamics of a head of a gravity current advancing over a horizontal surface. J. Fluid Mech. 94, 477–95. [pp. 174, 174, 175.]Google Scholar
Smeed, D.A. (2000). Hydraulic control of three-layer exchange flows: application to the Bab al Mandab. J. Phys. Oceanog. 30, 25742588. [p. 166.]Google Scholar
Smeed, D.A. (2004). Exchange through the Bab el Mandab. Deep-Sea Research II 51, 455474. [p. 166.]Google Scholar
Smith, R.B. (1976). The generation of lee waves by the Blue Ridge. J. Atmos. Sci. 33, 507–19. [p. 127.]Google Scholar
Smith, R.B. (1980). Linear theory of stratified hydrostatic flow past an isolated mountain. Tellus 32, 348–64. [pp. 402, 403, 405, 406, 408, 408, 411, 411.]Google Scholar
Smith, R.B. (1985). On severe downslope winds. J. Atmos. Sci. 42, 2597–603. [pp. 317, 319, 319, 368, 372.]Google Scholar
Smith, R.B. (1987). Aerial observations of the Yugoslavian Bora. J. Atmos. Sci. 44, 269–97. [p. 424.]2.0.CO;2>CrossRefGoogle Scholar
Smith, R.B. (1988). Linear theory of stratified flow past an isolated mountain in isosteric coordinates. J. Atmos. Sci. 45, 3889–96. [pp. 404, 426, 442.]Google Scholar
Smith, R.B. (1989a). Mountain-induced stagnation points in hydrostatic flow. Tellus 41A, 270–4. [p. 483.]Google Scholar
Smith, R.B. (1989b). Hydrostatic airflow over mountains. Advances in Geophysics 31, 141. [p. 405.]Google Scholar
Smith, R.B. & Grønås, A. (1993). Stagnation points and bifurcation in 3D mountain airflow. Tellus 45A, 2843. [pp. 264, 430, 431, 482.]CrossRefGoogle Scholar
Smith, R.B. & Grubi˘sić, V. (1993). Aerial observations of Hawaii’s wake. J. Atmos. Sci. 50, 3728–50. [p. 490.]2.0.CO;2>CrossRefGoogle Scholar
Smith, R.B. & Smith, D. (1995). Pseudo-inviscid wake formation by mountains in shallow water flow with a drifting vortex. J. Atmos. Sci. 52, 436454. [p. 492.]2.0.CO;2>CrossRefGoogle Scholar
Smith, R.B., Geason, A.C., Gluhosky, P.A. & Grubi˘sić, V. (1997). The wake of St. Vincent. J. Atmos. Sci. 54, 606ߝ623. [p. 491, 493.]Google Scholar
Smith, R.K., Crook, N. &Roff, G. (1982). TheMorning Glory: an extraordinary atmospheric undular bore. Quart. J. Roy. Met. Soc. 108, 937–56. [p. 190.]Google Scholar
Smolarkiewicz, P.K. & Rotunno, R. (1989). Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci. 46, 1154–64. [p. 481.]Google Scholar
Smolarkiewicz, P.K. & Rotunno, R. (1990). Low Froude number flow past three-dimensional obstacles. Part II: Upwind flow reversal zone. J. Atmos. Sci. 47, 1498–511. [pp. 481, 483.]2.0.CO;2>CrossRefGoogle Scholar
Smolarkiewicz, P.K., Rasmussen, R.M. & Clark, T.L. (1988). On the dynamics of Hawaiian cloud bands: island forcing. J. Atmos. Sci. 45, 1872–905. [pp. 490, 491, 492.]2.0.CO;2>CrossRefGoogle Scholar
Smyth, N.F. (1987). Modulation theory solution for resonant flow over topography. Proc. Roy. Soc. Lond. A 409, 7997. [p. 73.]Google Scholar
Smyth, N.F. (1988). Dissipative effects on the resonant flow of a stratified fluid over topography. J. Fluid Mech. 192, 287312. [p. 76.]Google Scholar
Smyth, W.D. & Peltier, W.R. (1989). The transition between Kelvin–Helmholtz and Holmboe instability: an investigation of the over-reflection hypothesis. J. Atmos. Sci. 46, 3698–720. [p. 253.]Google Scholar
Smyth, W.D., Klaassen, G.P. & Peltier, W.R. (1988). Finite amplitude Holmboe waves. Geophys. Astrophys. Fluid Dyn. 43, 181222. [p. 253.]Google Scholar
Snyder, W.H., Britter, R.E. & Hunt, J.C.R. (1980). A fluid modelling study of the flow structure and plume impingement on a three-dimensional hill in stably stratified flow. In Proc. 5th Int’l Conf. on Wind Engng, Cermak, J.E. (ed), Pergamon, pp. 319–29. [pp. 444, 453, 454.]Google Scholar
Snyder, W.H., Thompson, R.S., Eskridge, R.E., Lawson, R.E., Castro, I.P., Lee, J.T., Hunt, J.C.R. & Ogawa, Y. (1985). The structure of strongly stratified flow over hills: dividing streamline concept. J. Fluid Mech. 152, 249–88. [pp. 453, 453, 454, 462, 467.]Google Scholar
Song, Jiyun, Fan, S., Lin, W., Mottet, L., Woodward, H., Davies Wykes, M., Arcucci, R., Xiao, D., Debay, J.-E., ApSimon, H., Aristodemou, E., Birch, D., Carpentieri, M., Fang, F., Herzog, M., Hunt, G.R., Jones, R.L., Pain, C., Pavlidis, D., Robins, A.G., Short, C.A. & Linden, P.F. (2018). Natural ventilation in cities: the implications of fluid mechanics. Build. Res. Inf. 46, 809828. [p. 510.]Google Scholar
Staquet, C. & Sommeria, J. (2002). Internal gravity waves: from instabilities to turbulence. Ann. Rev. Fluid Mech. 34, 559–93. [p. 260.]Google Scholar
Stein, J. (1992). Investigation of the regime diagram of hydrostatic flow over a mountain with a primitive equation model. Part I: Two-dimensional flows. Mon. Wea. Rev. 120, 29622976. [pp. 372, 373.]2.0.CO;2>CrossRefGoogle Scholar
Stigebrandt, A. (1990). On the response of the horizontal mean vertical density distribution in a fjord to low-frequency density fluctuations in the coastal water. Tellus 42A, 605614. [p. 166.]Google Scholar
Stoker, J.J. (1953). Unsteady waves on a running stream. Comm. Pure Appl. Math. 6, 471–81. [p. 26.]Google Scholar
Stoker, J.J. (1957). Water Waves. InterScience, 567 pp. [p. 31.]Google Scholar
Strang, E.J. & Fernando, H.J.S. (2001). Vertical mixing and transports through a stratified shear layer. J. Phys. Oceanog. 31, 20262048. [p. 184.]Google Scholar
Straus, L., Serafin, S. & Grubi˘sić, V. (2016). Atmospheric rotors and severe turbulence in a long deep valley. J. Atmos. Sci. 73, 14811506. [p. 497.]Google Scholar
Struik, D.J. (1950). Lectures on Classical Differential Geometry. Addison–Wesley, 221 pp. [p. 397.]Google Scholar
Sturtevant, B. (1965). Implications of experiments on the weak undular bore. Phys. Fluids 8, 1052–55. [p. 71.]CrossRefGoogle Scholar
Su, C.H. (1976). Hydraulic jumps in an incompressible stratified fluid. J. Fluid Mech. 73, 3347. [p. 329.]CrossRefGoogle Scholar
Suzuki, M. & Kuwahara, K. (1992). Stratified flow past a bell-shaped hill. Fluid Dyn. Res. 9, 118. [p. 481.]CrossRefGoogle Scholar
Swanson, C.A. (1968). Comparison and Oscillation Theory of Linear Differential Equations. Academic Press, 227 pp. [p. 209.]Google Scholar
Tampieri, F. &Hunt, J.C.R. (1985). Two-dimensional stratified fluid flow over valleys: linear theory and a laboratory investigation. Boundary-layer Met. 32, 257–79. [p. 386.]Google Scholar
Tanaka, M. (1993). Mach reflection of a large-amplitude solitary wave. J. Fluid Mech. 248, 637–61. [p. 81.]Google Scholar
Taylor, P.A. (1988). Turbulent wakes in the atmospheric boundary layer. In Flow and Transport in the Natural Environment: Advances and Applications, Steffen, W.L. & Denmead, O.T. (eds), Springer-Verlag, 270–92. [p. 266.]Google Scholar
Thompson, R.S., Shipman, M.S. & Rottman, J.W. (1991). Moderately stable flow over a three-dimensional hill – a comparison of linear theory with laboratory measurements. Tellus 43A, 4963. [p. 446.]Google Scholar
Thorpe, S.A. (1968). A method of producing a shear flow in a stratified fluid. J. Fluid Mech. 32, 693704. [p. 247.]CrossRefGoogle Scholar
Thorpe, S.A. (1981). An experimental study of critical layers. J. Fluid Mech. 103, 321–44. [p. 232.]Google Scholar
Thorpe, S.A. (1987). Transitional phenomena and the development of turbulence in stratified fluids: A review. J. Geophys. Res. 92, 5231–48. [p. 253.]Google Scholar
Thorpe, S.A. (1992). The generation of internal waves by flow over the rough topography of a continental slope. Proc. Roy. Soc. 439, 115130. [p. 503.]Google Scholar
Thorpe, S.A. (1996). The cross-slope transport of momentum by internal waves generated by alongslope currents over topography. J. Phys. Oceanog. 26, 191204. [p. 503.]Google Scholar
Thorpe, S.A. (2005). The Turbulent Ocean. Cambridge University Press, 439 pp. [p. 502.]CrossRefGoogle Scholar
Thorpe, S.A. (2010). Turbulent hydraulic jumps in a stratified shear flow. J. Fluid Mech. 654, 305350. [p. 190.]Google Scholar
Thorpe, S.A. & Li, L. (2014). Turbulent hydraulic jumps in a stratified shear flow. Part 2. J. Fluid Mech. 758, 94120. [pp. 190, 191, 192.]Google Scholar
Thorpe, S.A., Malarkey, J., Voet, G., Alford, M.H., Girton, J.B. & Carter, G.S. (2018). Application of a model of internal hydraulic jumps. J. Fluid Mech. 834, 125148. [pp. 190, 192, 193, 194.]Google Scholar
Tomasson, G.C. & Melville, W.K. (1991). Flow past a constriction in a channel: A modal description. J. Fluid Mech. 232, 2145. [p. 141.]CrossRefGoogle Scholar
Trefethen, L.N., Trefethen, A.E., Reddy, S.C. & Driscoll, T.A. (1993). Hydrodynamic stability without eigenvalues. Science 261, 578–84. [p. 205.]CrossRefGoogle ScholarPubMed
Trustrum, K. (1971). An Oseen model of the two-dimensional flow of a stratified fluid over an obstacle. J. Fluid Mech. 50, 177–88. [p. 309.]Google Scholar
Tucker, G.B. (1989). Laboratory modelling of air flow in the Sofia valley. Bulg. Geophys. J. 15, 92100. [pp. 507, 509.]Google Scholar
Turner, J.S. (1973). Buoyancy Effects in Fluids. Cambridge University Press, 367 pp. [pp. 194, 247.]Google Scholar
Turner, J.S. (1986). Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471. [p. 185.]Google Scholar
Ungarish, M. & Hogg, A.J. (2018). Models of internal jumps and the fronts of gravity currents: unifying two-layer theories and deriving new results. J. Fluid Mech. 846, 654–85. [p. 109.]CrossRefGoogle Scholar
Ungarish, M. & Huppert, H.E. (2002). On gravity currents propagating at the base of a stratified ambient. J. Fluid Mech. 458, 283301. [p. 178.]CrossRefGoogle Scholar
Ünülata, U., Oguz, T., Latif, M.A. & Ozsoy, E. (1990). On the physical oceanography of the Turkish straits. In The Physical Oceanography of Sea Straits, Pratt, L. (ed), Kluwer, 2560. [p. .]Google Scholar
Vanden-Broeck, J.-M. (1987). Free surface flow over an obstruction in a channel. Phys. Fluids 30, 2315–17. [p. 77.]Google Scholar
Vanden-Broeck, J.-M. & Keller, J.B. (1987). Weir flows. J. Fluid Mech. 176, 283293. [p. 46.]CrossRefGoogle Scholar
Vlasenko, V., Stashchuk, N. & Hutter, K. (2005). Baroclinic Tides – Theoretical Modelling and Observational Evidence. (Second Edition, 2012.) Cambridge University Press, 351 pp. [pp. 502, 504.]Google Scholar
Voight, B. & Sparks, R.S.J. (2010). Introduction to special section on the Eruption of Soufriére Hills Volcano, Montserrat, the CALIPSO Project, and the SEA-CALIPSO Arc-Crust Imaging Experiment. Geophys. Res. Let. 37, L00E23, doi: 10.1029/2010GL044254. [p. 498.]Google Scholar
Vosper, S.B., Brown, A.R. & Webster, S. (2016). Orographic drag on islands in the NWP mountan grey zone. Quart. J. Roy. Met. Soc. 142, 3128–37. [p. 519.]Google Scholar
Vosper, S.B., Ross, A.N., Renfrew, I.A., Sheridan, P., Elvidge, A.D. and Grubi˘sić, V. (2018). Current challenges in orographic flow dynamics: turbulent exchange due to low-level gravity-wave processes. Atmosphere 361, doi:10.3390/atmos9090361. [p. 519.]Google Scholar
Vreman, A.W., AL-Tarazi, M., Kuipers, J.A.M., Van Sint Annaland, M. & Bokhove, O. (2007). Supercritical shallow granular flow through a contraction: experiment, theory and simulation. J. Fluid Mech. 578, 233269. [p. 54.]CrossRefGoogle Scholar
Wallace, J.M. & Hobbs, P.V. (1977). Atmospheric Science – an Introductory Survey. Academic Press, 467 pp. (Second edition, 2005.) [pp. 5, 419.]Google Scholar
Wallace, J.M., Tibaldi, S. & Simmons, A.J. (1983). Reduction of systematic forecast errors in the ECMWF model through the introduction of an envelope orography. Quart. J. Roy. Met. Soc. 109, 683717. [pp. 511, 512.]Google Scholar
Watson, G.N. (1966). A Treatise on the Theory of Bessel Functions. Cambridge University Press, 804 pp. [p. 207.]Google Scholar
Weber, M. (1919). Die Grundlagen der Ähnlichkeitsmechanik und ihre Verwertung bei Modellversuchen. Jahrbuch der Schiffbautechnischen Gesellschaft Berlin, Vol. 20, 355477. [p. 14.]Google Scholar
Wei, T. & Smith, C.R. (1986). Secondary vortices in the wake of circular cylinders. J. Fluid Mech. 169, 513–33. [pp. 467.]Google Scholar
Wei, S.N., Kao, T.W. & Pao, H.-P. (1975). Experimental study of upstream influence in the two-dimensional flow of a stratified fluid over an obstacle. Geophys. Fluid Dyn. 6, 315336. [p. 360.]Google Scholar
Weil, J.C., Traugott, S.C. & Wong, D.K. (1981). Stack plume interaction and flow characteristics for a notched ridge. Rep. PPRP-61, Maryland Power Plant Siting Program, Martin Marietta Corp., Baltimore, MD, 92 pp. [p. 470.]Google Scholar
Wells, M.G. &Wettlaufer, J.S. (2007). The long-term circulation driven by density currents in a two-layer stratified basin. J. Fluid Mech. 572, 3758. [p. 180.]CrossRefGoogle Scholar
White, B.L. & Helfrich, K.R. (2008). Gravity currents and internal waves in a stratified fluid. J. Fluid Mech. 616, 327356. [pp. 177, 179.]Google Scholar
White, B.L. & Helfrich, K.R. (2012). A general description of a gravity current front propagating in a two-layer fluid. J. Fluid Mech. 711, 545575. [pp. 177, 178, 179.]Google Scholar
White, B.L. & Helfrich, K.R. (2014). A model for internal bores in continuous stratification. J. Fluid Mech. 761, 282304. [p. 336.]CrossRefGoogle Scholar
Whitham, G.B. (1967). Variational methods and applications to water waves. Proc. Roy. Soc. Lond. A 229, 625. [p. 120.]Google Scholar
Whitham, G.B. (1974). Linear and Non-Linear Waves. Wiley, 636 pp. [pp. 17, 31, 49, 50, 58, 59, 100, 121.]Google Scholar
Williams, R. & Armi, L. (1991). Two-layer hydraulics with comparable internal wave speeds. J. Fluid Mech. 230, 667691. [pp. 142, 144, 145, 145.]Google Scholar
Winant, C.D., Dorman, C.E., Friehe, C.A. & Beardsley, R.C. (1988). The maritime layer off Northern California: an example of supercritical flow. J. Atmos. Sci. 45, 3588–605. [p. 141.]Google Scholar
Winters, K.B. (2016). The turbulent transition of a supercritical downslope flow: sensitivity to downstream conditions. J. Fluid Mech. 792, 9971012. [pp. 373, 387, 388, 388.]Google Scholar
Winters, K.B. & Armi, L. (2012). Hydraulic control of continuously stratified flow over an obstacle. J. Fluid Mech. 700, 502513. [p. 358.]CrossRefGoogle Scholar
Winters, K.B. & Armi, L. (2014). Topographic control of stratified flows: upstream jets, blocking and isolating layers. J. Fluid Mech. 753, 80103. [pp. 325, 369, 370, 370, 371, 373.]Google Scholar
Winters, K.B. & D’Asaro, E.A. (1989). Two-dimensional instability of finite amplitude internal gravity wave packets near a critical level. J. Geophys. Res. 94, 12709–19. [p. 232.]Google Scholar
Winters, K.B. & De La Fuente, A. (2012). Modelling rotating stratified flows at laboratory-scale using spectrally-based DNS. Ocean Model. 4950, 4759. [p. 325.]CrossRefGoogle Scholar
Winters, K.B. & Riley, J.J. (1992). Instabilities of internal waves near a critical level. Dyn. Atmos. Oceans 16, 249–78. [p. 236.]Google Scholar
Winters, K.B. & Seim, H.E. (2000). The role of dissipation and mixing in exchange flow through a contracting channel. J. Fluid Mech. 407, 265290. [p. 171.]CrossRefGoogle Scholar
Wolanski, E., Imberger, J. & Heron, M.L. (1984). Island wakes in shallow coastal waters. J. Geophys. Res. 89, 10553–69. [p. 84.]Google Scholar
Wong, K.K. & Kao, T W. (1970). Stratified flow over extended obstacles and its application to topographic effect on ambient wind shear. J. Atmos. Sci. 27, 8849. [p. 285.]Google Scholar
Wood, I.R. (1968). Selective withdrawal from a stably stratified fluid. J. Fluid Mech.. 32, 209223. [pp. 129, 131, 144, 144, 147, 166, 166.]Google Scholar
Wood, I.R. (1970). A lock exchange flow. J. Fluid Mech. 42, 671–87. [p. 158.]CrossRefGoogle Scholar
Wood, I.R. & Simpson, J.E. (1984). Jumps in layered miscible fluids. J. Fluid Mech. 140, 329–42. [p. 104.]CrossRefGoogle Scholar
Woods, A.E. (2010). Turbulent plumes in nature. Ann. Rev. Fluid Mech. 42, 391412. [p. 499.]Google Scholar
Woods, A.W. (1988). The thermodynamics and fluid dynamics of eruption columns. Bull. Volcanol. 50, 169191. [p. 499.]Google Scholar
Woodson, C.B. (2018). The fate and impact of internal waves in nearshore ecosystems. Ann. Rev. Marine Science 10, 421441. [p. 503.]Google ScholarPubMed
Wu, T.Y. (1987). Generation of upstream advancing solitons by moving disturbances. J. Fluid Mech. 184, 7599. [p. 72.]Google Scholar
Wu, D.M. & Wu, T.Y. (1982). Three-dimensional nonlinear long waves due to moving surface pressure. In Proc. 14th Symp. on Naval Hydrodynamics, Nat. Acad. Sci., Washington, DC, pp. 103–25. [p. 72.]Google Scholar
Wurtele, M.G. (1957). The three-dimensional lee wave. Beitr. Phys. Atmos. 29, 242–52. [p. 397.]Google Scholar
Wurtele, M.G., Sharman, R.D. & Datta, A. (1996). Atmospheric lee waves. Ann. Rev. Fluid Mech. 28, 429–76. [p. 373.]CrossRefGoogle Scholar
Yih, C-S. (1969). Fluid Mechanics: a Concise Introduction to the Theory. McGraw–Hill. 622 pp. [p. 147.]Google Scholar
Yih, C.S. & Guha, C.R. (1955). Hydraulic jump in a fluid system of two layers. Tellus 7, 358–66. [pp. 104, 330.]Google Scholar
Yuan, C., Grimshaw, R., Johnson, E. &Chen, X. (2018). The propagation of internal solitary waves over variable topography in a horizontally two-dimensional framework. J. Phys. Oceanog. 48, 283300. [p. 94.]Google Scholar
Zaremba, L.J., Lawrence, G.A. & Pieters, R. (2003). Frictional two-layer flow. J. Fluid Mech. 474, 339354. [p. 171.]CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter G. Baines, University of Melbourne
  • Book: Topographic Effects in Stratified Flows
  • Online publication: 04 April 2025
  • Chapter DOI: https://doi.org/10.1017/9781108673983.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter G. Baines, University of Melbourne
  • Book: Topographic Effects in Stratified Flows
  • Online publication: 04 April 2025
  • Chapter DOI: https://doi.org/10.1017/9781108673983.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter G. Baines, University of Melbourne
  • Book: Topographic Effects in Stratified Flows
  • Online publication: 04 April 2025
  • Chapter DOI: https://doi.org/10.1017/9781108673983.018
Available formats
×