Published online by Cambridge University Press: 17 April 2025
An important set of coordinates to understand is that of our oblate Earth. I derive the equations transforming latitude/longitude/height to and from the ECEF cartesian axes. I use the model aircraft of a previous chapter as an aid to visualise the rotation sequences that are useful for calculating NED or ENU coordinates at a given point on or near Earth’s surface. I use these in a detailed example of sighting a distant aircraft. This leads to a description of the ‘DIS standard’ designed for such scenarios. I also use these ideas in a detailed example of estimating Earth’s gravity at a given point, which is necessary for implementing inertial navigation systems.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.