Published online by Cambridge University Press: 03 April 2025
Many physical models admit an initial value formulation. In this chapter we discuss an initial value formulation for the vacuum Einstein equation. A vacuum initial data set will be given geometrically as a manifold endowed with Riemannian metric and a symmetric two-tensor. That these give the first and second fundamental forms of an embedding into a Lorentzian manifold satisfying the vacuum Einstein equation imposes, via the Gauss and Codazzi equations, constraints on the initial data. These conditions, which govern the space of allowable initial data sets for the vacuum Einstein equation, comprise the Einstein constraint equations, the study of solutions to which form an interesting and rich subject for geometric analysis.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.