Published online by Cambridge University Press: 20 August 2009
Computational fluid dynamics (CFD) is a relatively young branch of fluid dynamics, the other two being the experimental and the theoretical disciplines. Its rapid development was enabled by the spectacular progress in high power computers, as well as by a matching progress in numerical schemes.
The starting point for the formulation of CFD schemes is the governing equations. In fact, the term “fluid dynamical equations” is much too general and indeed ambivalent. In practice there exist numerous models of such equations. They reflect a variety of stipulations on the nature of the flow, such as compressibility, viscosity, or elasticity. They also involve various effects such as heat conduction or chemical reactions. A large portion of these models do not fall, mathematically speaking, under the category of “hyperbolic conservation laws,” which is the subject matter of this monograph. We refer the reader to the book by Landau and Lifshitz [75] for a general survey of fluid dynamical models.
In this monograph we are concerned with time-dependent, inviscid, compressible flow, which is studied primarily in the “quasi-one-dimensional” geometric setting. This leads to a system of partial differential equations expressing the conservation of mass, momentum, and energy. There are various approaches to the numerical resolution of this system, such as the classical method of characteristics or the “artificial viscosity” scheme.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.