from Part 1 - Multiplication on the tangent bundle
Published online by Cambridge University Press: 12 September 2009
Discriminants play a central role in singularity theory. Usually they have a rich geometry and say a lot about the mappings or other objects from which they are derived. The discriminant D of a massive F-manifold M with a generating function (cf. Definition 3. 18) is an excellent model case of such discriminants, having many typical properties.
Together with the unit field it determines the whole F-manifold in a nice geometric way. This is discussed in section 4.1 (cf. Corollary 4.6). In section 4.3 results from singularity theory are adapted to show that the discriminant and also the bifurcation diagram are free divisors under certain hypotheses.
The classification of germs of 2-dimensional massive F-manifolds is nice and is carried out in section 4.2. Already for 3-dimensional germs it is vast (cf. section 5.5). In section 4.4 the Lyashko–Looijenga map is used to prove that the automorphism group of a germ of a massive F-manifold is finite. There also the notions modality and μ-constant stratum from singularity theory are adapted to F-manifolds. In section 4.5 the relation between analytic spectrum and multiplication is generalized. This allows F-manifolds to be found in natural geometric situations (e.g. hypersurface and boundary singularities) and to be written down in an economic way (e.g. in 5.22, 5.27, 5.30, 5.32).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.