from Part 2 - Arrangements in Higher Dimensions
Published online by Cambridge University Press: 12 September 2009
Given n and a convex body K, we consider arrangements of n congruent copies, namely, packings inside convex containers and coverings of compact convex sets. Concerning density, clusters are naturally related to periodic arrangements (see Theorem 7.1.1). In addition, we verify that an asymptotic density exists as n tends to infinity (see Theorem 7.2.2), and we characterize the case when this asymptotic density is one (see Lemma 7.2.3). Example 7.2.4 shows that the asymptotic structure of the optimal arrangement depends very much on K.
Concerning the mean i-dimensional projection for i = 1, …, d − 1, we verify that the optimal convex hull of n nonoverlapping congruent copies of K is close to being a ball (see Theorem 7.2.2). In contrast, the compact convex set of maximal mean width covered by n congruent copies of K is close to being a segment (see Theorem 7.4.1).
Periodic and Finite Arrangements
Let K be a convex body in ℝd. If K is a periodic arrangement by congruent copies of K with respect to the lattice Λ (see Section A.13), and the number of equivalence classes is m, then the density of the arrangement is m · V(K)/det Λ. We define the packing density δ(K) to be supremum of the densities of periodic packings by congruent copies of K, and we let Δ(K) = V(K)/δ(K).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.