Skip to main content Accessibility help
×
Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-28T05:30:17.468Z Has data issue: false hasContentIssue false

Chapter 7 - The Uncertain Science of Preimplantation Genetic Testing for Reproduction

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

Unexplained recurrent pregnancy loss (RPL) includes non-euploid and euploid miscarriages but, unfortunately, are seldom identified as such because miscarriages are seldom karyotyped. There are few established treatments for unexplained RPL. Even if a factor is not identified, 80% of patients with two previous miscarriages can give birth, 70% if three miscarriages, 60% if four miscarriages, 50% if five miscarriages, 85% cumulatively. A 32 year old patient with RPL has an 85% likelihood of giving birth. Preimplantation genetic testing for aneuploidy (PGT-A) has no evidence of improvement in live birth rate. Molecular karyotyping of biopsied cells might be different from those of the inner cell mass due to mosaicism. Disruption by biopsy may reduce pregnancy rate. Subsequent pregnancy outcomes in patients with unexplained RPL who did not undergo PGT-A are important to publish for comparison.

Type
Chapter
Information
Early Pregnancy , pp. 57 - 69
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Handyside, A. H., Kontogianni, E. H., Hardy, K., Winston, R. M.. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature. 1990;344(6268):768–70.CrossRefGoogle ScholarPubMed
Munné, S., Lee, A., Rosenwaks, Z., Grifo, J., Cohen, J.. Diagnosis of major chromosome aneuploidies in human preimplantation embryos. Hum Reprod. 1993;8(12):2185–91.CrossRefGoogle ScholarPubMed
Munné, S., Scott, R., Sable, D., Cohen, J.. First pregnancies after preconception diagnosis of translocations of maternal origin. Fertil Steril. 1998;69(4):675–81.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M., Suzumori, K.. Can preimplantation genetic diagnosis improve success rates in recurrent aborters with translocation? Hum Reprod. 2005;20(12):3267–70.CrossRefGoogle Scholar
Mastenbroek, S., Twisk, M., van Echten-Arends, J., Sikkema-Raddatz, B., Korevaar, J. C., Verhoeve, H. R., et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357(1):917.CrossRefGoogle ScholarPubMed
Scott, R. T., Upham, K. M., Forman, E. J., Zhao, T., Treff, N. R.. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30.CrossRefGoogle Scholar
Hellani, A., Abu-Amero, K., Azouri, J., El-Akoum, S.. Successful pregnancies after application of array-comparative genomic hybridization in PGS-aneuploidy screening. Reprod Biomed Online. 2008;17(6):841–47.CrossRefGoogle ScholarPubMed
Fiorentino, F., Bono, S., Biricik, A., Nuccitelli, A., Cotroneo, E., Cottone, G., et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802–13.CrossRefGoogle ScholarPubMed
Yan, J., Qin, Y., Zhao, H., Sun, Y., Gong, F., Li, R., et al. Live birth with or without preimplantation genetic testing for aneuploidy. N Engl J Med. 2021;385(22):2047–58.CrossRefGoogle ScholarPubMed
Practice Committees of the American Society for Reproductive Medicine and the Society for Assisted Reproductive Technology. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109(3):429–36.Google Scholar
ESHRE Guideline Group on RPL, Bender Atik, R., Christiansen, O. B., Elson, J., Kolte, A. M., Lewis, S., et al. ESHRE guideline: recurrent pregnancy loss. Hum Reprod Open. 2018;2018(2):hoy004.Google ScholarPubMed
Quenby, S., Gallos, I. D., Dhillon-Smith, R. K., Podesek, M., Stephenson, M. D., Fisher, J., et al. Miscarriage matters: the epidemiological, physical, psychological, and economic burden of early pregnancy loss. Lancet. 2021;397(10285):1658–67.CrossRefGoogle Scholar
Coomarasamy, A., Dhillon-Smith, R. K., Papadopoulou, A., Al-Memar, M., Brewin, J., Abrahams, V. M., et al. Recurrent miscarriage: evidence to accelerate action. Lancet. 2021;397(10285):1675–82.CrossRefGoogle ScholarPubMed
Van Assche, E., Bonduelle, M., Tournaye, H., Joris, H., Verheyen, G., Devroey, P., et al. Cytogenetics of infertile men. Hum Reprod. 1996;11(Suppl 4):126.CrossRefGoogle ScholarPubMed
De Braekeler, M., Dao, T. N.. Cytogenetic studies in couples experiencing repeated pregnancy losses. Hum Reprod. 1990;5(5):519–28.CrossRefGoogle Scholar
Sugiura-Ogasawara, M., Ozaki, Y., Sato, T., Suzumori, N., Suzumori, K.. Poor prognosis of recurrent aborters with either maternal or paternal reciprocal translocations. Fertil Steril. 2004;81(2):367–73.CrossRefGoogle ScholarPubMed
Stephenson, M. D., Sierra, S.. Reproductive outcomes in recurrent pregnancy loss associated with a parental carrier of a structural chromosome rearrangement. Hum Reprod. 2006;21(4):1076–82.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M., Aoki, K., Fujii, T., Fujita, T., Kawaguchi, R., Maruyama, T., et al. Subsequent pregnancy outcomes in recurrent miscarriage patients with a paternal or maternal carrier of a structural chromosome rearrangement. J Hum Genet. 2008;53(7):622–28.CrossRefGoogle ScholarPubMed
Ozawa, N., Maruyama, T., Nagashima, T., Ono, M., Arase, T., Ishimoto, H., et al. Pregnancy outcomes of reciprocal translocation carriers who have a history of repeated pregnancy loss. Fertil Steril. 2008;90(4):1301–4.CrossRefGoogle ScholarPubMed
Franssen, M. T., Korevaar, J. C., van der Veen, F., Leschot, N. J., Bossuyt, P. M., Goddijn, M.. Reproductive outcome after chromosome analysis in couples with two or more miscarriages: index [corrected]-control study. BMJ. 2006;332(7544):759–62.CrossRefGoogle ScholarPubMed
Li, S., Zheng, P. S., Ma, H. M., Feng, Q., Zhang, Y. R., Li, Q. S., et al. Systematic review of subsequent pregnancy outcomes in couples with parental abnormal chromosomal karyotypes and recurrent pregnancy loss. Fertil Steril. 2022;118(5):906–14.CrossRefGoogle ScholarPubMed
Lim, C. K., Jun, J. H., Min, D. M., Lee, H.-S., Kim, J. Y., Koong, M. K., et al. Efficacy and clinical outcome of preimplantation genetic diagnosis using FISH for couples of reciprocal and Robertsonian translocations: the Korean experience. Prenat Diagn. 2004;24(7):556–61.Google Scholar
Otani, T., Roche, M., Mizuike, M., Colls, P., Escudero, T., Munné, S.. Preimplantation genetic diagnosis significantly improves the pregnancy outcome of translocation carriers with a history of recurrent miscarriage and unsuccessful pregnancies. Reprod Biomed Online. 2006;13(6):869–74.CrossRefGoogle ScholarPubMed
Feyereisen, E., Steffann, J., Romana, S., Lelorc’h, M., Ray, P., Kerbrat, V., et al. Five years’ experience of preimplantation genetic diagnosis in the Parisian Center: outcome of the first 441 started cycles. Fertil Steril. 2007;87(1):6073.CrossRefGoogle Scholar
Fischer, J., Colls, P., Escudero, T., Munné, S.. Preimplantation genetic diagnosis (PGD) improves pregnancy outcome for translocation carriers with a history of recurrent losses. Fertil Steril. 2010;94(1):283–89.CrossRefGoogle ScholarPubMed
Fiorentino, F., Bono, S., Biricik, A., Nuccitelli, A., Cotroneo, E., Cottone, G., et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802–13.CrossRefGoogle ScholarPubMed
Idowu, D., Merrion, K., Wemmer, N., Mash, J. G., Pettersen, B., Kijacic, D., et al. Pregnancy outcomes following 24-chromosome preimplantation genetic diagnosis in couples with balanced reciprocal or Robertsonian translocations. Fertil Steril. 2015;103(4):1037–42.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M., Sato, T.. The uncertain science of preimplantation genetic testing in Japan. Nat Med. 2022;28(9):1732–33.CrossRefGoogle ScholarPubMed
Ikuma, S., Sato, T., Sugiura-Ogasawara, M., Nagayoshi, M., Tanaka, A., Takeda, S.. Preimplantation genetic diagnosis and natural conception: a comparison of live birth rates in patients with recurrent pregnancy loss associated with translocation. PLosOne. 2015;10(6):e0129958.CrossRefGoogle Scholar
ESHRE Guideline Group on RPL, Bender Atik, R., Christiansen, O. B., Elson, J., Kolte, A. M., Lewis, S., et al. ESHRE guideline: recurrent pregnancy loss: an update in 2022. Hum Reprod Open. 2023;2023(1):hoad002.Google ScholarPubMed
Ogasawara, M., Aoki, K., Okada, S., Suzumori, K.. Embryonic karyotype of abortuses in relation to the number of previous miscarriages. Fertil Steril. 2000;73(2):300304.CrossRefGoogle Scholar
Stephenson, M. D., Awartani, K. A., Robinson, W. P.. Cytogenetic analysis of miscarriages from couples with recurrent miscarriage: a case-control study. Hum Reprod. 2002;17(2):446–51.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M., Ozaki, Y., Kitaori, T., Kumagai, K., Suzuki, S.. Midline uterine defect size correlated with miscarriage of euploid embryos in recurrent cases. Fertil Steril. 2010;93(6):1983–88.CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M., Ozaki, Y., Katano, K., Suzumori, N., Kitaori, T., Mizutani, E. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod. 2012;27(8):2297–303.CrossRefGoogle Scholar
Popescu, F., Jaslow, C. R., Kutteh, W. H.. Recurrent pregnancy loss evaluation combined with 24-chromosome microarray of miscarriage tissue provides a probable or definite cause of pregnancy loss in over 90% of patients. Hum Reprod. 2018;33(4):579–87.CrossRefGoogle ScholarPubMed
Franasiak, J. M., Forman, E. J., Hong, K. H., Werner, M. D., Upham, K. M., Treff, N. R., et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63.CrossRefGoogle Scholar
Nagaoka, S. I., Hassold, T. J., Hunt, P. A.. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat Rev Genet. 2012;13(7):493504.CrossRefGoogle ScholarPubMed
Gruhn, J. R., Zielinska, A. P., Shukla, V., Blanshard, R., Capalbo, A., Cimadomo, D., et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 2019;365(6460):1466–69.CrossRefGoogle Scholar
Katano, K., Suzuki, S., Ozaki, Y., Suzumori, N., Kitaori, T., Sugiura-Ogasawara, M.. Peripheral natural killer cell activity as a predictor of recurrent pregnancy loss: a large cohort study. Fertil Steril. 2013;100(6):1629–34.CrossRefGoogle Scholar
Brigham, S. A., Conlon, C., Farquharson, R. G.. A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum Reprod. 1999;14(11):2868–71.CrossRefGoogle ScholarPubMed
Kolte, A. M., Westergaard, D., Lidegaard, Ø., Brunak, S., Nielsen, H. S.. Chance of live birth: a nationwide, registry-based cohort study. Hum Reprod. 2021;36(4):1065–73.CrossRefGoogle ScholarPubMed
Harper, J. C., Wilton, L., Traeger-Synodinos, J., Goossens, V., Moutou, C., SenGupta, S. B., et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18(3):234–47.CrossRefGoogle ScholarPubMed
Wilding, M., Forman, R., Hogewind, G., Di Matteo, L., Zullo, F., Cappiello, F., et al. Preimplantation genetic diagnosis for the treatment of failed in vitro fertilization-embryo transfer and habitual abortion. Fertil Steril. 2004;81(5):1302–7.CrossRefGoogle ScholarPubMed
Platteau, P., Staessen, C., Michiels, A., Van Steirteghem, A., Liebaers, I., Devroey, P.. Preimplantation genetic diagnosis for aneuploidy screening in patients with unexplained recurrent miscarriages. Fertil Steril. 2005;83(2):393–97.CrossRefGoogle ScholarPubMed
Munné, S., Chen, S., Fischer, J., Colls, P., Zheng, Z., Stevens, J., et al. Preimplantation genetic diagnosis reduces pregnancy loss in women aged 35 years and older with a history of recurrent miscarriages. Fertil Steril. 2005;84(2):331–35.CrossRefGoogle ScholarPubMed
Musters, A. M., Repping, S., Korevaar, J. C., Mastenbroek, S., Limpens, J., van der Veen, F., Goddijn, M.. Pregnancy outcome after preimplantation genetic screening or natural conception in couples with unexplained recurrent miscarriage: a systematic review of the best available evidence. Fertil Steril. 2011;95(6):2153–57CrossRefGoogle ScholarPubMed
Sugiura-Ogasawara, M., Ozaki, Y., Kitaori, T., Suzumori, N., Obayashi, S., Suzuki, S.. Live birth rate according to maternal age and previous number of recurrent miscarriages. Am J Reprod Immunol. 2009;62(5):314–19.CrossRefGoogle ScholarPubMed
Murugappan, G., Shahine, L. K., Perfetto, C. O., Hickok, L. R., Lathi, R. B.. Intent to treat analysis of in vitro fertilization and preimplantation genetic screening versus expectant management in patients with recurrent pregnancy loss. Hum Reprod. 2016;31(8):1668–74.CrossRefGoogle ScholarPubMed
Sato, T., Sugiura-Ogasawara, M., Ozawa, F., Yamamoto, T., Kato, T., Kurahashi, H., et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34(12):2340–48.CrossRefGoogle ScholarPubMed
Bhatt, S. J., Marchetto, N. M., Roy, J., Morelli, S. S., McGovern, P. G.. Pregnancy outcomes following in vitro fertilization frozen embryo transfer (IVF-FET) with or without preimplantation genetic testing for aneuploidy (PGT-A) in women with recurrent pregnancy loss (RPL): a SART-CORS study. Hum Reprod. 2021;36(8):2339–44.CrossRefGoogle ScholarPubMed
Scott, R. T., Upham, K. M., Forman, E. J., Hong, K. H., Scott, K. L., Taylor, D., et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013;100(3):697703.CrossRefGoogle ScholarPubMed
Rubio, C., Bellver, J., Rodrigo, L., Castillón, G., Guillén, A., Vidal, C., et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107(5):1122–29.CrossRefGoogle ScholarPubMed
Gleicher, N., Albertini, D. F., Patrizio, P., Orvieto, R., Adashi, E. Y.. The uncertain science of preimplantation and prenatal genetic testing. Nat Med. 2022;28(3):442–44.CrossRefGoogle ScholarPubMed
Coticchio, G., Barrie, A., Lagalla, C., Borini, A., Fishel, S., Griffin, D., Campbell, A.. Plasticity of the human preimplantation embryo: developmental dogmas, variations on themes and self-correction. Hum Reprod Update. 2021;27(5):848–65.CrossRefGoogle ScholarPubMed
Coorens, T. H. H., Oliver, T. R. W., Sanghvi, R., Sovio, U., Cook, E., Vento-Tormo, R., et al. Inherent mosaicism and extensive mutation of human placentas. Nature. 2021;592(7852):8085.CrossRefGoogle ScholarPubMed
Costello, J. F., Fisher, S. J.. The placenta – fast, loose, and in control. N Engl J Med. 2021;385(1):8789.CrossRefGoogle ScholarPubMed
Japan Society of Obstetrics and Gynecology. Art data book. オンライン登録|公益社団法人 日本産科婦人科学会. January 4, 2023. www.jsog.or.jp/medical/663.Google Scholar
Coomarasamy, A., Devall, A. J., Cheed, V., Harb, H., Middleton, L. J., Gallos, I. D., et al. A randomized trial of progesterone in women with bleeding in early pregnancy. N Engl J Med. 2019;380(19):1815–24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×