Skip to main content Accessibility help
×

Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.

Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-26T21:37:39.237Z Has data issue: false hasContentIssue false

Chapter 13 - Inherited Thrombophilia

Published online by Cambridge University Press:  16 April 2025

Roy G. Farquharson
Affiliation:
Liverpool Women’s Hospital
Mary D. Stephenson
Affiliation:
University of Illinois, Chicago
Mariëtte Goddijn
Affiliation:
Amsterdam University Medical Centers
Get access

Summary

Thrombophilia can be defined as laboratory abnormalities, usually in the coagulation system, that result in a hypercoagulable state and thus predispose to thrombosis. These abnormalities may be acquired or inherited. The most clearly established form of acquired thrombophilia is the antiphospholipid anti- body syndrome. This chapter focuses on inherited thrombophilia. The relevance of inherited thrombophilia in early pregnancy is manifested in an elevated risk of venous thromboembolism, a modestly increased risk of miscarriage, and a possible relation with fertility.

Type
Chapter
Information
Early Pregnancy , pp. 122 - 136
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Coppens, M., Kaandorp, S. P., Middeldorp, S.. Inherited thrombophilias. Obstet Gynecol Clin North Am. 2006;33(3):357–74.CrossRefGoogle ScholarPubMed
Ray, J. G., Shmorgun, D., Chan, W. S.. Common C677T polymorphism of the methylenetetrahydrofolate reductase gene and the risk of venous thromboembolism: meta-analysis of 31 studies. Pathophysiol Haemost Thromb. 2002;32:5158.CrossRefGoogle ScholarPubMed
Den Heijer, M., Willems, H. P. J., Blom, H. J., Gerrits, W. B. J., Cattaneo, M., Eichinger, S., et al. Homocysteine lowering by B vitamins and the secondary prevention of deep vein thrombosis and pulmonary embolism: a randomized, placebo-controlled, double-blind trial. Blood. 2007;109(1):139–44.CrossRefGoogle Scholar
Grandone, E., Tiscia, G., Colaizzo, D., Chinni, E., Pisanelli, D., Bafunno, V., et al. Role of the M2 haplotype within the annexin A5 gene in the occurrence of pregnancy-related venous thromboembolism. Am J Obstet Gynecol. 2010;203(5):461.e15.CrossRefGoogle ScholarPubMed
Bates, S. M., Rajasekhar, A., Middeldorp, S., McLintock, C., Rodger, M. A., James, A. H., et al. American Society of Hematology 2018 guidelines for management of venous thromboembolism: venous thromboembolism in the context of pregnancy. Blood Adv. 2018;2(22):3317–59.CrossRefGoogle ScholarPubMed
Ray, J. G., Chan, W. S.. Deep vein thrombosis during pregnancy and the puerperium: a meta-analysis of the period of risk and the leg of presentation. Obstet Gynecol Surv. 1999;54(4):265–71.Google ScholarPubMed
O’Riordan, M. N., Higgins, J. R.. Haemostasis in normal and abnormal pregnancy. Best Pract Res Clin Obstet Gynaecol. 2003;17(3):385–96.Google ScholarPubMed
Dahm, A. E., Tiscia, G., Holmgren, A., Jacobsen, A. F., Skretting, G., Grandone, E., et al. Genetic variations in the annexin A5 gene and the risk of pregnancy-related venous thrombosis. J Thromb Haemost. 2015;13(3):409–13.CrossRefGoogle ScholarPubMed
Jacobsen, A. F., Skjeldestad, F. E., Sandset, P. M.. Ante- and postnatal risk factors of venous thrombosis: a hospital-based case-control study. J Thromb Haemost. 2008;6(6):905–12.CrossRefGoogle ScholarPubMed
Morris, J. M., Algert, C. S., Roberts, C. L.. Incidence and risk factors for pulmonary embolism in the postpartum period. J Thromb Haemost. 2010;8(5):9981003.CrossRefGoogle ScholarPubMed
Sultan, A. A., Tata, L. J., West, J., Fiaschi, L., Fleming, K. M., Nelson-Piercy, C., et al. Risk factors for first venous thromboembolism around pregnancy: a population-based cohort study from the United Kingdom. Blood. 2013;121(19):3953–61.CrossRefGoogle ScholarPubMed
Blondon, M., Quon, B. S., Harrington, L. B., Bounameaux, H., Smith, N. L.. Association between newborn birthweight and the risk of postpartum maternal venous thromboembolism: a population-based case-control study. Circulation. 2015;131(17):1471–76.CrossRefGoogle ScholarPubMed
Rodger, M.. Pregnancy and venous thromboembolism: “TIPPS” risk stratification. Hematol/Educ Progr Am Soc Hematol. 2014;2:387–92.Google Scholar
Pabinger, I., Grafenhofer, H., Kaider, A., Kyrle, P. A., Quehenberger, P., Mannhalter, C., et al. Risk of pregnancy-associated recurrent venous thromboembolism in women with a history of venous thrombosis. J Thromb Haemost. 2005;3(5):949–54.CrossRefGoogle ScholarPubMed
Greer, I. A., Nelson-Piercy, C.. Low-molecular-weight heparins for thromboprophylaxis and treatment of venous thromboembolism in pregnancy: a systematic review of safety and efficacy. Blood. 2005;106(2):401–7.CrossRefGoogle ScholarPubMed
Bank, I., Libourel, E. J., Middeldorp, S., Van Der Meer, J., Büller, H. R.. High rate of skin complications due to low-molecular-weight heparins in pregnant women. J Thromb Haemost. 2003;1(4):859–61.CrossRefGoogle ScholarPubMed
Sheldon, W. R., Blum, J., Vogel, J. P., Souza, J. P., Gülmezoglu, M. A., Winikoff, B., et al. Postpartum haemorrhage management, risks, and maternal outcomes: findings from the World Health Organization multicountry survey on maternal and newborn health. BJOG. 2014;121(Suppl 1):513.CrossRefGoogle ScholarPubMed
Carroli, G., Cuesta, C., Abalos, E., Gulmezoglu, A.M.. Epidemiology of postpartum haemorrhage: a systematic review. Best Pract Res Clin Obstet Gynaecol. 2008;22(6):9991012.CrossRefGoogle ScholarPubMed
Bistervels, I. M., Buchmüller, A., Wiegers, H. M. G., Ní Áinle, F., Tardy, B., Donnelly, J, et al. Intermediate-dose versus low-dose low-molecular-weight heparin in pregnant and post-partum women with a history of venous thromboembolism (Highlow study): an open-label, multicentre, randomised, controlled trial. Lancet. 2022;400(10365):1777–87.CrossRefGoogle ScholarPubMed
American College of Obstetricians and Gynecologists Women’s Health Care Physicians. ACOG practice bulletin no. 138: inherited thrombophilias in pregnancy. Obstet Gynecol. 2013;122(3):706–17.Google Scholar
Cohen, H., Arachchillage, D. R., Middeldorp, S., Beyer-Westendorf, J., Abdul-Kadir, R.. Management of direct oral anticoagulants in women of childbearing potential: guidance from the SSC of the ISTH. J Thromb Haemost. 2016;14(8):1673–76.CrossRefGoogle ScholarPubMed
Bleker, S. M., Coppens, M., Middeldorp, S.. Sex, thrombosis and inherited thrombophilia. Blood Rev. 2014;28(3):123–33.CrossRefGoogle ScholarPubMed
Bezemer, I. D., van der Meer, F. J., Eikenboom, J. C., Rosendaal, F. R., Doggen, C. J.. The value of family history as a risk indicator for venous thrombosis. Arch Intern Med. 2009;169(6):610–15.CrossRefGoogle ScholarPubMed
Middeldorp, S., van Hylckama Vlieg, A.. Does thrombophilia testing help in the clinical management of patients? Br J Haematol. 2008;143(3):321–35.CrossRefGoogle ScholarPubMed
Middeldorp, S., Nieuwlaat, R., Baumann Kreuziger, L., Coppens, M., Houghton, D., James, A. H., et al. American Society of Hematology 2023 guidelines for management of venous thromboembolism: thrombophilia testing. Blood Adv. 2023;7(22):7101–38.CrossRefGoogle ScholarPubMed
Chan, W. S., Anand, S., Ginsberg, J. S.. Anticoagulation of pregnant women with mechanical heart valves: a systematic review of the literature. Arch Intern Med. 2000;160(2):191–96.CrossRefGoogle Scholar
Middeldorp, S., Ganzevoort, W.. How I treat venous thromboembolism in pregnancy. Blood. 2020;136(19):2133–42.CrossRefGoogle Scholar
Preston, F. E., Rosendaal, F. R., Walker, I. D., Briët, E., Berntorp, E., Conard, J., et al. Increased fetal loss in women with heritable thrombophilia. Lancet. 1996;348(9032):913–16.CrossRefGoogle ScholarPubMed
Rey, E., Kahn, S. R., David, M., Shrier, I.. Thrombophilic disorders and fetal loss: a meta-analysis. Lancet. 2003;361(9361):901–8.CrossRefGoogle ScholarPubMed
Robertson, L., Wu, O., Langhorne, P., Twaddle, S., Clark, P., Lowe, G. D. O., et al. Thrombophilia in pregnancy: a systematic review. Br J Haematol. 2006;132(2):171–96.CrossRefGoogle ScholarPubMed
Rodger, M. A., Walker, M. C., Smith, G. N., Wells, P. S., Ramsay, T., Langlois, N. J., et al. Is thrombophilia associated with placenta-mediated pregnancy complications? A prospective cohort study. J Thromb Haemost. 2014;12(4):469–78.Google ScholarPubMed
Rai, R., Regan, L.. Recurrent miscarriage. Lancet. 2006;368(9535):601–11.CrossRefGoogle ScholarPubMed
Kujovich, J. L.. Thrombophilia and pregnancy complications. Am J Obstet Gynecol. 2004;191(2):412–24.CrossRefGoogle ScholarPubMed
Bennett, S. A., Bagot, C. N., Arya, R.. Pregnancy loss and thrombophilia: the elusive link. Br J Haematol. 2012;157(5):529–42.CrossRefGoogle ScholarPubMed
Isermann, B., Sood, R., Pawlinski, R., Zogg, M., Kalloway, S., Degen, J. L., et al. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med. 2003;9(3):331–37.CrossRefGoogle ScholarPubMed
Lay, A. J., Liang, Z., Rosen, E. D., Castellino, F. J.. Mice with a severe deficiency in protein C display prothrombotic and proinflammatory phenotypes and compromised maternal reproductive capabilities. J Clin Invest. 2005;115(6):1552–61.CrossRefGoogle ScholarPubMed
Sood, R., Zogg, M., Westrick, R. J., Guo, Y.-H., Kerschen, E. J., Girardi, G., et al. Fetal gene defects precipitate platelet-mediated pregnancy failure in factor V Leiden mothers. J Exp Med. 2007;204(5):1049–56.CrossRefGoogle ScholarPubMed
Bose, P., Black, S., Kadyrov, M., Weissenborn, U., Neulen, J., Regan, L., et al. Heparin and aspirin attenuate placental apoptosis in vitro: implications for early pregnancy failure. Am J Obstet Gynecol. 2005;192(1):2330.CrossRefGoogle ScholarPubMed
Luley, L., Schumacher, A., Mulla, M. J., Franke, D., Löttge, M., Fill Malfertheiner, S., et al. Low molecular weight heparin modulates maternal immune response in pregnant women and mice with thrombophilia. Am J Reprod Immunol. 2015;73(5):417–27.CrossRefGoogle ScholarPubMed
Tüttelmann, F., Ivanov, P., Dietzel, C., Sofroniou, A., Tsvyatkovska, T. M., Komsa-Penkova, R. S., et al. Further insights into the role of the annexin A5 M2 haplotype as recurrent pregnancy loss factor, assessing timing of miscarriage and partner risk. Fertil Steril. 2013;100(5):1321–25.CrossRefGoogle ScholarPubMed
Bogdanova, N., Horst, J., Chlystun, M., Croucher, P. J. P., Nebel, A., Bohring, A., et al. A common haplotype of the annexin A5 (ANXA5) gene promoter is associated with recurrent pregnancy loss. Hum Mol Genet. 2007;16(5):573–78.CrossRefGoogle ScholarPubMed
Thean Hock, T., Bogdanova, N., Kai Cheen, A., Kathirgamanathan, S., bin Abdullah, R., Mohd Yusoff, N., et al. M2/ANXA5 haplotype as a predisposition factor in Malay women and couples experiencing recurrent spontaneous abortion: a pilot study. Reprod Biomed Online. 2015;30(4):434–39.CrossRefGoogle ScholarPubMed
Toth, B., Vocke, F., Rogenhofer, N., Friese, K., Thaler, C. J., Lohse, P.. Paternal thrombophilic gene mutations are not associated with recurrent miscarriage. Am J Reprod Immunol. 2008;60(4):325–32.CrossRefGoogle Scholar
Udry, S., Aranda, F. M., Latino, J. O., de Larrañaga, G. F.. Paternal factor V Leiden and recurrent pregnancy loss: a new concept behind fetal genetics? J Thromb Haemost. 2014;12(5):666–69.Google Scholar
Kaandorp, S. P., Goddijn, M., van der Post, J. A. M., Hutten, B. A., Verhoeve, H. R., Hamulyák, K., et al. Aspirin plus heparin or aspirin alone in women with recurrent miscarriage. N EnglJ Med. 2010;362(17):1586–96.CrossRefGoogle ScholarPubMed
Clark, P., Walker, I. D., Langhorne, P., Crichton, L., Thomson, A., Greaves, M., et al. A multicenter, randomized controlled trial of low-molecular-weight heparin and low-dose aspirin in women with recurrent miscarriage. Blood. 2010;115(21):4162–67.CrossRefGoogle ScholarPubMed
Pasquier, E., de Saint Martin, L., Bohec, C., Chauleur, C., Bretelle, F., Marhic, G., et al. Enoxaparin for prevention of unexplained recurrent miscarriage: a multicenter randomized double-blind placebo-controlled trial. Blood. 2015;125(14):22002205.CrossRefGoogle ScholarPubMed
Skeith, L., Carrier, M., Kaaja, R., Martinelli, I., Petroff, D., Schleußner, E., et al. A meta-analysis of low-molecular-weight heparin to prevent pregnancy loss in women with inherited thrombophilia. Blood. 2016;127(13):1650–55.CrossRefGoogle ScholarPubMed
Rodger, M. A., Hague, W. M., Kingdom, J., Kahn, S. R., Karovitch, A., Sermer, M., et al. Antepartum dalteparin versus no antepartum dalteparin for the prevention of pregnancy complications in pregnant women with thrombophilia (TIPPS): a multinational open-label randomised trial. Lancet. 2014;384(9955):1673–83.CrossRefGoogle Scholar
Quenby, S., Booth, K., Hiller, L., Coomarasamy, A., de Jong, P. G., Hamulyák, E. N., et al. Heparin for women with recurrent miscarriage and inherited thrombophilia (ALIFE2): an international open-label, randomised controlled trial. Lancet. 2023;402(10395):5461.CrossRefGoogle ScholarPubMed
Gris, J. C., Mercier, E., Quéré, I., Lavigne-Lissalde, G., Cochery-Nouvellon, E., Hoffet, M., et al. Low-molecular-weight heparin versus low-dose aspirin in women with one fetal loss and a constitutional thrombophilic disorder. Blood. 2004;103(10):3695–99.CrossRefGoogle Scholar
Rodger, M.. Important publication missing key information. Blood. 2004;104(10):3413–14. doi.org/10.1182/blood-2004-06-2121.CrossRefGoogle ScholarPubMed
Coppens, M., Folkeringa, N., Teune, M. J., Hamulyák, K., Van Der Meer, J., Prins, M. H., et al. Outcome of the subsequent pregnancy after a first loss in women with the factor V Leiden or prothrombin 20210A mutations. J Thromb Haemost. 2007;5:1444–48.Google ScholarPubMed
De Jong, P. G., Goddijn, M., Middeldorp, S.. Antithrombotic therapy for pregnancy loss. Hum Reprod Update. 2013;19(6):656–73.CrossRefGoogle ScholarPubMed
Middeldorp, S.. Thrombophilia and pregnancy complications: cause or association? J Thromb Haemost. 2007;5(Suppl 1):276–82.CrossRefGoogle ScholarPubMed
Azem, F., Many, A., Ben Ami, I., Yovel, I., Amit, A., Lessing, J. B., et al. Increased rates of thrombophilia in women with repeated IVF failures. Hum Reprod. 2004;19(2):368–70.CrossRefGoogle ScholarPubMed
Di Nisio, M., Rutjes, A. W. S., Ferrante, N., Tiboni, G. M., Cuccurullo, F., Porreca, E.. Thrombophilia and outcomes of assisted reproduction technologies: a systematic review and meta-analysis. Blood. 2011;118(10):2670–78.CrossRefGoogle ScholarPubMed
Göpel, W., Ludwig, M., Junge, A. K., Kohlmann, T., Diedrich, K., Möller, J.. Selection pressure for the factor-V-Leiden mutation and embryo implantation. Lancet. 2001;358(9289):1238–39.CrossRefGoogle ScholarPubMed
Rudick, B., Su, H. I., Sammel, M. D., Kovalevsky, G., Shaunik, A., Barnhart, K.. Is factor V Leiden mutation a cause of in vitro fertilization failure? Fertil Steril. 2009;92(4):1256–59.CrossRefGoogle ScholarPubMed
Kerlin, B. A., Yan, S. B., Isermann, B. H., Brandt, J. T., Sood, R., Basson, B. R., et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood. 2003;102(9):3085–92.CrossRefGoogle ScholarPubMed
Griffin, J. H., Zlokovic, B. V., Mosnier, L. O.. Protein C anticoagulant and cytoprotective pathways. Int J Hematol. 2012;95(4):333–45.CrossRefGoogle ScholarPubMed
Bellver, J., Soares, S. R., Álvarez, C., Muñoz, E., Ramírez, A., Rubio, C., et al. The role of thrombophilia and thyroid autoimmunity in unexplained infertility, implantation failure and recurrent spontaneous abortion. Hum Reprod. 2008;23(11):2614.CrossRefGoogle ScholarPubMed
Steinvil, A., Raz, R., Berliner, S., Steinberg, D. M., Zeltser, D., Levran, D., et al. Association of common thrombophilias and antiphospholipid antibodies with success rate of in vitro fertilisation. Thromb Haemost. 2012;108(6):1192–97.Google ScholarPubMed
Van Mens, T. E., Levi, M., Middeldorp, S.. Evolution of factor V Leiden. Thromb Haemost. 2013;110(1):2330.Google ScholarPubMed
Kaandorp, S. P., van Mens, T. E., Middeldorp, S., Hutten, B. A., Hof, M. H. P., van der Post, J. A. M., et al. Time to conception and time to live birth in women with unexplained recurrent miscarriage. Hum Reprod. 2014;29(6):1146–52.CrossRefGoogle ScholarPubMed
Cohn, D. M., Repping, S., Büller, H. R., Meijers, J. C. M., Middeldorp, S.. Increased sperm count may account for high population frequency of factor V Leiden. J Thromb Haemost. 2010;8(3):513–16.CrossRefGoogle ScholarPubMed
Fishel, S., Patel, R., Lytollis, A., Robinson, J., Smedley, M., Smith, P., et al. Multicentre study of the clinical relevance of screening IVF patients for carrier status of the annexin A5 M2 haplotype. Reprod Biomed Online. 2014;29(1):8087.CrossRefGoogle ScholarPubMed
Dentali, F., Grandone, E., Rezoagli, E., Ageno, W.. Efficacy of low molecular weight heparin in patients undergoing in vitro fertilization or intracytoplasmic sperm injection. J Thromb Haemost. 2011;9(12):2503–6.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×