Skip to main content Accessibility help
×
Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-29T11:25:00.308Z Has data issue: false hasContentIssue false

9 - Measuring Connectivity

Methodologies for Assessing Connectivity as a Property of Soils and Landscapes

from Part III - Quantifying Connectivity in Geomorphology

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Understanding how well critical source areas of water or sediment are connected to receiving surface waters, is an essential step towards improvement of land management. For this, it is important to quantify connectivity beyond the conceptual and proportional evaluation that most studies use connectivity for. Most studies measure only the potential of a landscape to allow connectivity to occur; or the connectivity that occurs at a given moment. This fact shows the two opportunities that will make it possible to monitor connectivity: assess the potential connectivity and the water and sediment fluxes through those landscapes. These components finally may result in the desired knowledge on the connectivity of the research area. In this chapter, we identify three spatial levels of connectivity: soil, hillslopes and catchments. In addition, to be able to measure and monitor connectivity the stocks and flow within every spatial level is introduced to allow for the identification of available techniques to actually assess connectivity at the given scale. The chapter ends with a set of key questions that need answering to make measuring connectivity on different scales reliable and useful.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abotalib, A. Z., Heggy, E., El Bastawesy, M., Ismail, E., Gad, A., & Attwa, M. (2021). Groundwater mounding: A diagnostic feature for mapping aquifer connectivity in hyper-arid deserts. Science of The Total Environment, 801, 149760.CrossRefGoogle ScholarPubMed
Andries, A., Morse, S., Murphy, R. J., Lynch, J., Mota, B., & Woolliams, E. R. (2021). Can current earth observation technologies provide useful information on soil organic carbon stocks for environmental land management policy? Sustainability, 13(21), 12074.CrossRefGoogle Scholar
Angelopoulou, T., Tziolas, N., Balafoutis, A., Zalidis, G., & Bochtis, D. (2019). Remote sensing techniques for soil organic carbon estimation: A review. Remote Sensing, 11(6), 676.CrossRefGoogle Scholar
Barrena-González, J., Rodrigo-Comino, J., Gyasi-Agyei, Y., Pulido, M., & Cerdá, A. (2020). Applying the RUSLE and ISUM in the Tierra de Barros Vineyards (Extremadura, Spain) to Estimate Soil Mobilisation Rates. Land, 9(3), 93.CrossRefGoogle Scholar
Bekele, B., & Gemi, Y. (2021). Soil erosion risk and sediment yield assessment with universal soil loss equation and GIS: In Dijo watershed, Rift valley Basin of Ethiopia. Modeling Earth Systems and Environment, 7(1), 273291.CrossRefGoogle Scholar
Berihun, M. L., Tsunekawa, A., Haregeweyn, N., Tsubo, M., Fenta, A. A., Ebabu, K., Sultan, D. & Dile, Y. T. (2022). Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. Journal of Hydrology: Regional Studies, 40, 100998.Google Scholar
Bezak, N., Mikoš, M., Borrelli, P., Alewell, C., Alvarez, P., Anache, J. A. A., Baartman, J et al. (2021). Soil erosion modelling: A bibliometric analysis. Environmental Research, 197, 111087.CrossRefGoogle ScholarPubMed
Blake, W. H., Wallbrink, P. J., Wilkinson, S. N., Humphreys, G. S., Doerr, S. H., Shakesby, R. A., & Tomkins, K. M. (2009). Deriving hillslope sediment budgets in wildfire-affected forests using fallout radionuclide tracers. Geomorphology, 104(3–4), 105116.CrossRefGoogle Scholar
Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M. & Roy, A. G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 1734. https://doi.org/10.1016/j.earscirev.2013.02.001CrossRefGoogle Scholar
Bracken, L. J., Turnbull, L., Wainwright, J., & Bogaart, P. (2015). Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surface Processes and Landforms, 40, 177188. https://doi.org/10.1002/esp.3635CrossRefGoogle Scholar
Brunsden, D., & Thornes, J. B. (1979). Landscape sensitivity and change. Transactions of the Institute of British Geographers, 4, 463484.CrossRefGoogle Scholar
Burt, T., & Allison, R. J. (eds.). (2010). Sediment Cascades: An Integrated Approach. John Wiley & Sons.CrossRefGoogle Scholar
Cerdà, A. & Doerr, S. H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256263.CrossRefGoogle Scholar
Cerdà, A., Rodrigo-Comino, J., Yakupoğlu, T., Dindaroğlu, T., Terol, E., Mora-Navarro, G., Arabameri, A., Radziemska, M., Novara, A., Kavian, A., Vaverková, M. D., Abd-Elmabod, S. K., Hammad, H. M. & Daliakopoulos, I. N. (2020). Tillage versus no-Tillage. Soil properties and hydrology in an organic persimmon farm in Eastern Iberian Peninsula. Water 12, 1539. https://doi.org/10.3390/w12061539CrossRefGoogle Scholar
Cerdà, A., Franch-Pardo, I., Novara, A., Sannigrahi, S. & Rodrigo-Comino, J. (2021). Examining the effectiveness of catch crops as a nature-based solution to mitigate surface soil and water losses as an environmental regional concern. Earth Systems and Environment. https://doi.org/10.1007/s41748-021-00284-9.Google Scholar
Cerdà, A., Lucas-Borja, M. E., Franch-Pardo, I., Úbeda, X., Novara, A., López-Vicente, M., Popović, Z. & Pulido, M. (2021). The role of plant species on runoff and soil erosion in a Mediterranean shrubland. Science of The Total Environment, 799, 149218.CrossRefGoogle Scholar
Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64(4), 14791486.CrossRefGoogle Scholar
Chirinda, N., Roncossek, S. D., Heckrath, G., Elsgaard, L., Thomsen, I. K., & Olesen, J. E. (2014). Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat. Catena, 123, 99105.CrossRefGoogle Scholar
Chorley, R. J., & Kennedy, B. A. (1971). Physical Geography: A Systems Approach. London, UK: Prentice Hall.Google Scholar
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A., Marchi, L., & Cazorzi, F. (2018). Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to a debris-flow channel. Environmental Earth Sciences, 77(18), 121.CrossRefGoogle Scholar
Doyle, M. W., Shields, D., Boyd, K. F., Skidmore, P. B., & Dominick, D. (2007). Channel-forming discharge selection in river restoration design. Journal of Hydraulic Engineering, 133(7), 831837.CrossRefGoogle Scholar
Edokpa, D., Milledge, D., Allott, T., Holden, J., Shuttleworth, E., Kay, M., Johnston, A., et al.(2022). Rainfall intensity and catchment size control storm runoff in a gullied blanket peatland. Journal of Hydrology, 609, 127688.CrossRefGoogle Scholar
Evrard, O., Laceby, J. P., Lepage, H., Onda, Y., Cerdan, O., & Ayrault, S. (2015). Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review. Journal of Environmental Radioactivity, 148, 92110.CrossRefGoogle Scholar
Ferguson, R. (2008). Gravel-bed rivers at the reach scale. In Habersack, H., Piegay, H. & Rinaldi, M. (eds.), Gravel-Bed Rivers VI: From Process Understanding to River Restoration. Amsterdam: Elsevier. 3353.Google Scholar
Fernández-Raga, M., Palencia, C., Keesstra, S., Jordán, A., Fraile, R., Angulo-Martínez, M. & Cerdà, A. (2017). Splash erosion: A review with unanswered questions. Earth-Science Reviews, 171, 463477. https://doi.org/10.1016/j.earscirev.2017.06.009CrossRefGoogle Scholar
Forsmoo, J., Anderson, K., Macleod, C. J., Wilkinson, M. E., & Brazier, R. (2018). Drone‐based structure‐from‐motion photogrammetry captures grassland sward height variability. Journal of Applied Ecology, 55(6), 25872599.CrossRefGoogle Scholar
Fryirs, K. A., Brierley, G. J., Preston, N. J., & Kasai, M. (2007). Buffers, barriers and blankets: The (dis) connectivity of catchment-scale sediment cascades. Catena, 70(1), 4967.CrossRefGoogle Scholar
Fryirs, K. A. (2013). (Dis)Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surface Processes and Landforms, 38, 3046.CrossRefGoogle Scholar
García-Ruiz, J. M., Beguería, S., Lana-Renault, N., Nadal-Romero, E. & Cerdà, A. (2017). Ongoing and emerging questions in water erosion studies. Land Degradation & Development, 28, 521. https://doi.org/10.1002/ldr.2641CrossRefGoogle Scholar
Heckmann, T. & Vericat, D. (2018). Computing spatially distributed sediment delivery ratios: Inferring functional sediment connectivity from repeat high-resolution digital elevation models. Earth Surface Processes and Landforms, 43, 15471554. https://doi.org/10.1002/esp.4334CrossRefGoogle Scholar
Heidbüchel, I., Troch, P. A., Lyon, S. W., & Weiler, M. (2012). The master transit time distribution of variable flow systems. Water Resources Research, 48(6).CrossRefGoogle Scholar
Hikel, H., Yair, A., Schwanghart, W., Hoffmann, U., Straehl, S. & Kuhn, N. J. (2013): Experimental investigation of soil ecohydrology on rocky desert slopes in the Negev Highlands, Israel. Zeitschrift für Geomormorphologie, Suplementary Issue, 57, 3958.CrossRefGoogle Scholar
Hooke, J. & Souza, J. (2021). Challenges of mapping, modelling and quantifying sediment connectivity. Earth-Science Reviews, 223. https://doi.org/10.1016/j.earscirev.2021.103847Google Scholar
Kalantari, Z., Ferreira, C. S. S., Koutsouris, A. J., Ahmer, A.-K., Cerdà, A. & Destouni, G. (2019). Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the Total Environment, 661, 393406. https://doi.org/10.1016/j.scitotenv.2019.01.009CrossRefGoogle ScholarPubMed
Keesstra, S., Pereira, P., Novara, A., Brevik, E. C., Azorin-Molina, C., Parras-Alcántara, L., Jordán, A. & Cerdà, A. (2016). Effects of soil management techniques on soil water erosion in apricot orchards. Science of the Total Environment, 551–552, 357366. https://doi.org/10.1016/j.scitotenv.2016.01.182CrossRefGoogle ScholarPubMed
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Pöppl, R., Masselink, R. & Cerdà, A. (2018). The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?. Science of the Total Environment, 644, 15571572. https://doi.org/10.1016/j.scitotenv.2018.06.342CrossRefGoogle ScholarPubMed
Keesstra, S. D., Davis, J., Masselink, R. H., Casalí, J., Peeters, E. T. H. M. & Dijksma, R. (2019). Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain. Journal of Soils Sediments, 19, 15981612. https://doi.org/10.1007/s11368-018-02223-0CrossRefGoogle Scholar
Klaus, J., & McDonnell, J. J. (2013). Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 505, 4764.CrossRefGoogle Scholar
Kleine, L., Tetzlaff, D., Smith, A., Goldhammer, T. & Soulsby, C. (2021). Using isotopes to understand landscape-scale connectivity in a groundwater-dominated, lowland catchment under drought conditions. Hydrological Processes, 35. https://doi.org/10.1002/hyp.14197CrossRefGoogle Scholar
Keesstra, S. D., Temme, A. J. A. M., Schoorl, J. M. & Visser, S. M. (2014). Evaluating the hydrological component of the new catchment-scale sediment delivery model LAPSUS-D. Geomorphology, 212, 97107. https://doi.org/10.1016/j.geomorph.2013.04.021CrossRefGoogle Scholar
Koch, J. C., Dornblaser, M. M., & Striegl, R. G. (2021). Storm‐scale and seasonal dynamics of carbon export from a nested subarctic watershed underlain by permafrost. Journal of Geophysical Research: Biogeosciences, 126(8), e2021JG006268.Google Scholar
Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M. & Distel, R. A. (2013). Degradation and recovery processes in Semi-Arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development, 24: 393399. doi:10.1002/ldr.1145CrossRefGoogle Scholar
Lecce, S. A., & Pavlowsky, R. T. (2014). Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina, USA. Geomorphology, 206, 122132.CrossRefGoogle Scholar
Li, S., Lu, J., Liang, G., Wu, X., Zhang, M., Plougonven, E., Wang, Y., Gao, L., Abdelrhman, A. A., Song, X., Liu, X. & Degré, A. (2021). Factors governing soil water repellency under tillage management: The role of pore structure and hydrophobic substances. Land Degradation & Development, 32, 10461059. https://doi.org/10.1002/ldr.3779CrossRefGoogle Scholar
Li, X., Fu, S., Hu, Y., & Liu, B. (2022). Effects of rock fragment coverage on soil erosion: Differ among rock fragment sizes?. CATENA, 214, 106248.CrossRefGoogle Scholar
Lizaga, I., Gaspar, L., Blake, W. H., Latorre, B., & Navas, A. (2019). Fingerprinting changes of source apportionments from mixed land uses in stream sediments before and after an exceptional rainstorm event. Geomorphology, 341, 216229.CrossRefGoogle Scholar
Llena, M., Vericat, D., Cavalli, M., Crema, S., & Smith, M. W. (2019). The effects of land use and topographic changes on sediment connectivity in mountain catchments. Science of the Total Environment, 660, 899912.CrossRefGoogle ScholarPubMed
López-Vicente, M., Kramer, H. & Keesstra, S. (2021a). Effectiveness of soil erosion barriers to reduce sediment connectivity at small basin scale in a fire-affected forest. Journal of Environmental Management, 278. https://doi.org/10.1016/j.jenvman.2020.111510CrossRefGoogle Scholar
López-Vicente, M., Cerdà, A., Kramer, H. & Keesstra, S. (2021b). Post-fire practices benefits on vegetation recovery and soil conservation in a Mediterranean area. Land Use Policy, 111, 105776. https://doi.org/10.1016/j.landusepol.2021.105776CrossRefGoogle Scholar
López-Vicente, M., González-Romero, J., & Lucas-Borja, M. E. (2020). Forest fire effects on sediment connectivity in headwater sub-catchments: Evaluation of indices performance. Science of the Total Environment, 732, 139206.CrossRefGoogle ScholarPubMed
Lugato, E., Smith, P., Borrelli, P., Panagos, P., Ballabio, C., Orgiazzi, A., Fernandez-Ugalde, O., Montanarella, L. & Jones, A (2018). Soil erosion is unlikely to drive a future carbon sink in Europe. Science Advances, 4(11), eaau3523.CrossRefGoogle ScholarPubMed
Luk, S. H., Abrahams, A. D., & Parsons, A. J. (1993). Sediment sources and sediment transport by rill flow and interrill flow on a semi-arid piedmont slope, southern Arizona. Catena, 20(1–2), 93111.CrossRefGoogle Scholar
Martinez‐Agirre, A., Álvarez‐Mozos, J., Milenković, M., Pfeifer, N., Giménez, R., Valle, J. M., & Rodríguez, Á. (2020). Evaluation of Terrestrial Laser Scanner and Structure from Motion photogrammetry techniques for quantifying soil surface roughness parameters over agricultural soils. Earth Surface Processes and Landforms, 45(3), 605621.CrossRefGoogle Scholar
Masselink, R. J. H., Temme, A. J. A. M., Giménez, R., Casalí, J. & Keesstra, S. D. (2017). Assessing hillslope-channel connectivity in an agricultural catchment using rare-earth oxide tracers and random forests models. Cuadernos de Investigación Geográfica / Geographical Research, 43. https://doi.org/10.18172/cig.3169Google Scholar
Mekonnen, M., Keesstra, S. D., Baartman, J. E., Stroosnijder, L., & Maroulis, J. (2017). Reducing sediment connectivity through man‐made and natural sediment sinks in the Minizr catchment, Northwest Ethiopia. Land Degradation & Development, 28(2), 708717.CrossRefGoogle Scholar
Miller, J. R., Watkins, X., O’Shea, T., & Atterholt, C. (2021). Controls on the spatial distribution of trace metal concentrations along the bedrock-dominated South Fork New River, North Carolina. Geosciences, 11(12), 519.CrossRefGoogle Scholar
Mouyen, M., Steer, P., Chang, K. J., Le Moigne, N., Hwang, C., Hsieh, W. C., Jeandet, L, et al. (2020). Quantifying sediment mass redistribution from joint time-lapse gravimetry and photogrammetry surveys. Earth Surface Dynamics, 8(2), 555577.CrossRefGoogle Scholar
Novara, A., Pulido, M., Rodrigo-Comino, J., Di Prima, S., Smith, P., Gristina, L., Giménez-Morera, A., Terol, E., Salesa, D. & Keesstra, S. (2019). Long-term organic farming on a citrus plantation results in soil organic matter recovery. Cuadernos de Investigación Geográfica, 45, 271286. http://doi.org/10.18172/cig.3794CrossRefGoogle Scholar
Old, G., Naden, P., Granger, S. J., Bilotta, G. S., Brazier, R. E. & Macleod, C. J. A. (2012). A novel application of natural fluorescence to understand the sources and transport pathways of pollutants from livestock farming in small headwater catchments. Science of the Total Environment, 417, 169182.CrossRefGoogle ScholarPubMed
Owens, P. N., Blake, W. H., Giles, T. R., & Williams, N. D. (2012). Determining the effects of wildfire on sediment sources using 137Cs and unsupported 210Pb: The role of landscape disturbances and driving forces. Journal of Soils and Sediments, 12(6), 982994.CrossRefGoogle Scholar
Oyewumi, O., Cavanaugh, C., Guzzardi, D., & Costa, M. (2022). Geochemical assessment of trace element concentrations in the Farmington River, Connecticut, Northeastern, USA. Environmental Monitoring and Assessment, 194(5), 115.CrossRefGoogle ScholarPubMed
Palacio, R. G., Bisigato, A. J. & Bouza, B. J. (2014). Soil erosion in three grazed plant communities in northeastern Patagonia. Land Degradation and Development, 25, 594603. doi:10.1002/ldr.2289CrossRefGoogle Scholar
Parsons, A. J., Brazier, R. E., Wainwright, J., & Powell, D. M. (2006). Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 31(11), 13841393.CrossRefGoogle Scholar
Parsons, A. J., Bracken, L., Pöppl, R. E., Wainwright, J. & Keesstra, S. D. (2015). Introduction to special issue on connectivity in water and sediment dynamics. Earth Surface Processes and Landforms, 40, 12751277. https://doi.org/10.1002/esp.3714CrossRefGoogle Scholar
Petit, S. & Burel, F. (1998). Effects of landscape dynamics on the metapopulation of a ground beetle (Coleoptera, Carabidae) in a hedgerow network. Agriculture, Ecosystems and Environment, 69, 243252.CrossRefGoogle Scholar
Powell, D., Brazier, R., Parsons, A., Wainwright, J. & Nichols, M. (2007). Sediment transfer and storage in dryland headwater streams. Geomorphology, 88 (1–2), 152166.CrossRefGoogle Scholar
Prats, S. A., Malvar, M. C., Simões-Vieira, D. C., MacDonald, L. & Keizer, J. J. (2013). Effectiveness of hydro- mulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degradation & Development, doi:10.1002/ldr.2236.Google Scholar
Priddy, C. L., Pringle, J. K., Clarke, S. M., & Pettigrew, R. P. (2019). Application of photogrammetry to generate quantitative geobody data in ephemeral fluvial systems. The Photogrammetric Record, 34(168), 428444.CrossRefGoogle Scholar
Puttock, A., Macleod, C., Bol, R., Sessford, P., Dungait, J. & Brazier, R. E. (2013). Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semi‐arid grass to woody vegetation transitions. Earth Surface Processes and Landforms, 38 (13), 16021611.CrossRefGoogle Scholar
Richards, G., Gilmore, T. E., Mittelstet, A. R., Messer, T. L., & Snow, D. D. (2021). Baseflow nitrate dynamics within nested watersheds of an agricultural stream in Nebraska, USA. Agriculture, Ecosystems & Environment, 308, 107223.CrossRefGoogle Scholar
Rodrigo‐Comino, J., Ponsoda‐Carreres, M., Salesa, D., Terol, E., Gyasi‐Agyei, Y., & Cerdà, A. (2020). Soil erosion processes in subtropical plantations (Diospyros kaki) managed under flood irrigation in Eastern Spain. Singapore Journal of Tropical Geography, 41(1), 120135.CrossRefGoogle Scholar
Rodrigo-Comino, J., Terol, E., Mora, G., Gimenez-Morera, A., & Cerdà, A. (2020). Vicia sativa Roth. can reduce soil and water losses in recently planted vineyards (Vitis vinifera L.). Earth Systems and Environment. https://doi.org/10.1007/s41748-020-00191-5CrossRefGoogle Scholar
Rodrigo Comino, J., Keesstra, S. D., & Cerdà, A. (2018). Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms, 43(10), 21932206.CrossRefGoogle Scholar
Rodrigo Comino, J. & Cerdà, A. (2018). Improving stock unearthing method to measure soil erosion rates in vineyards. Ecological Indicators, 85, 509517. https://doi.org/10.1016/j.ecolind.2017.10.042CrossRefGoogle Scholar
Sepehri, M., Ghahramani, A., Kiani-Harchegani, M., Ildoromi, A. R., Talebi, A. & Rodrigo-Comino, J. (2021). Assessment of drainage network analysis methods to rank sediment yield hotspots. Hydrological Sciences Journal, 66, 904918. https://doi.org/10.1080/02626667.2021.1899183CrossRefGoogle Scholar
Saco, P. M., Rodríguez, J. F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., Baartman, J., Rodrigo-Comino, J. & Rossi, M. J. (2020). Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena 186. https://doi.org/10.1016/j.catena.2019.104354CrossRefGoogle Scholar
Saco, P. M. & Moreno-De Las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49, 115126. https://doi.org/10.1029/2012WR012001CrossRefGoogle Scholar
Salesa, D. & Cerdà, A. (2020). Soil erosion on mountain trails as a consequence of recreational activities. A comprehensive review of the scientific literature. Journal of Environmental Management, 271. https://doi.org/10.1016/j.jenvman.2020.110990CrossRefGoogle ScholarPubMed
Sharma, N., Kaushal, A., Yousuf, A., Sood, A., Kaur, S., & Sharda, R. (2022). Geospatial technology for assessment of soil erosion and prioritization of watersheds using RUSLE model for lower Sutlej sub-basin of Punjab, India. Environmental Science and Pollution Research, 117.Google ScholarPubMed
Shoshany, M. (2012). Identifying desert thresholds by mapping inverse and recovery potentials in patch patterns using spectral and morphological algorithms. Land Degradation & Development, 23: 331338. doi:10.1002/ldr.2146CrossRefGoogle Scholar
Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., & Tetzlaff, D. (2015). Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high‐resolution isotope data. Water Resources Research, 51(9), 77597776.CrossRefGoogle ScholarPubMed
Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., Batjes, N. H., et al. (2020). How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 26(1), 219241.CrossRefGoogle ScholarPubMed
Smith, M. W., & Vericat, D. (2014). Evaluating shallow‐water bathymetry from through‐water terrestrial laser scanning under a range of hydraulic and physical water quality conditions. River Research and Applications, 30(7), 905924.CrossRefGoogle Scholar
Smith, H. G., Hopmans, P., Sheridan, G. J., Lane, P. N. J., Noske, P. J. & Bren, L. J. (2012). Impacts of wildfire and salvage harvesting on water quality and nutrient exports from radiata pine and eucalypt forest catchments in south-eastern Australia. Forest Ecology and Management, 263, 160169.CrossRefGoogle Scholar
Smith, H. G., & Blake, W. H. (2014). Sediment fingerprinting in agricultural catchments: A critical re-examination of source discrimination and data corrections. Geomorphology, 204, 177191.CrossRefGoogle Scholar
Smith, P. (2004). Soils as carbon sinks: The global context. Soil Use and Management, 20(2), 212218.CrossRefGoogle Scholar
Sombrero, A. & de Benito, A. (2010). Carbon accumulation in soil. Ten-year study of conservation tillage and crop rotation in a semi-arid area of Castile-Leon, Spain. Soil and Tillage Research, 107, 6470. https://doi.org/10.1016/j.still.2010.02.009CrossRefGoogle Scholar
Tekwa, I. J., Laflen, J. M., Kundiri, A. M., & Alhassan, A. B. (2021). Evaluation of WEPP versus EGEM and empirical model efficiencies in predicting ephemeral gully erosion around Mubi area, Northeast Nigeria. International Soil and Water Conservation Research, 9(1), 1125.CrossRefGoogle Scholar
Tessler, N., Wittenberg, L. & Greenbaum, N. (2013). Soil water repellency persistence after recurrent forest fires on Mount Carmel, Israel. International Journal of Wildland Fire, 22, 515526.CrossRefGoogle Scholar
Tischendorf, L. (2001). Can landscape indices predict ecological processes consistently?. Landscape Ecology, 16(3), 235254.CrossRefGoogle Scholar
Turnbull, L., Hütt, M.-T., Ioannides, A. A., Kininmonth, S., Pöppl, R., Tockner, K., Bracken, L. J., Keesstra, S., Liu, L., Masselink, R., Masselink, R. & Parsons, A. J. (2018). Connectivity and complex systems: Learning from a multi-disciplinary perspective. Applied Network Science, 3. https://doi.org/10.1007/s41109-018-0067-2CrossRefGoogle ScholarPubMed
Turnbull, L., Wainwright, J. & Brazier, R. E. (2010). Hydrology, erosion and nutrient transfers over a transition from semi-arid grassland to shrubland in the South-Western USA: A modelling assessment. Journal of Hydrology, 388 (3–4), 258272.CrossRefGoogle Scholar
Turski, M., Lipiec, J., Chodorowski, J., Sokołowska, Z., & Skic, K. (2022). Vertical distribution of soil water repellency in ortsteinic soils in relation to land use. Soil and Tillage Research, 215, 105220.CrossRefGoogle Scholar
Vannoppen, W., Vanmaercke, M., De Baets, S. & Poesen, J. (2015). A review of the mechanical effects of plant roots on concentrated flow erosion rates. Earth-Science Reviews, 150, 666678. https://doi.org/10.1016/j.earscirev.2015.08.011CrossRefGoogle Scholar
Walling, D. E. (2013). The evolution of sediment source fingerprinting investigations in fluvial systems. Journal of Soils and Sediments, 13, 16581675.CrossRefGoogle Scholar
Walter, T. R., Salzer, J., Varley, N., Navarro, C., Arámbula-Mendoza, R., & Vargas-Bracamontes, D. (2018). Localized and distributed erosion triggered by the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras at Volcán de Colima, Mexico. Geomorphology, 319, 186198.CrossRefGoogle Scholar
With, K. A., & King, A. W. (1997). The use and misuse of neutral landscape models in ecology. Oikos, 219229.CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., Hilton, R. G., Lane, S. N., Magilligan, F. J., Meitzen, K. M., Passalacqua, P., Pöppl, R. E., Rathburn, S. L., & Sklar, L. S. (2019). Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms, 44, 426.CrossRefGoogle Scholar
Wolman, M. G. & Miller, J. P. (1960). Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68(1), 5474. https://doi.org/10.1086/626637CrossRefGoogle Scholar
Yan, R., & Gao, J. (2021). Key factors affecting discharge, soil erosion, nitrogen and phosphorus exports from agricultural polder. Ecological Modelling, 452, 109586.CrossRefGoogle Scholar
Zhang, G., Mahale, V. N., Putnam, B. J., Qi, Y., Cao, Q., Byrd, A. D., Bukovcic, P, et al. (2019). Current status and future challenges of weather radar polarimetry: Bridging the gap between radar meteorology/hydrology/engineering and numerical weather prediction. Advances in Atmospheric Sciences, 36(6), 571588.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×