Published online by Cambridge University Press: 07 December 2009
In Chapter 6 we reviewed the theory underlying transported PDF methods. In order to apply this theory to practical flow problems, numerical algorithms are required to ‘solve’ the PDF transport equation. In general, solving the PDF transport equation using standard finite-difference (FD) or finite-volume (FV) methods is computationally intractable for a number of reasons. For example, the velocity, composition PDF transport equation ((6.19), p. 248) has three space variables (x), three velocity variables (V), Ns composition variables (ψ), and time (t). Even for a statistically two-dimensional, steady-state flow with only one scalar, a finite-difference grid in at least five dimensions would be required! Add to this the problem of developing numerical techniques that ensure fU, φ remains non-negative and normalized to unity at every space/time point (x, t), and the technical difficulties quickly become insurmountable.
A tractable alternative to ‘solving’ the PDF transport equation is to use statistical or Monte-Carlo (MC) simulations. Unlike FV methods, MC simulations can handle a large number of independent variables, and always ensure that the resulting estimate of fu, φ is well behaved. As noted in Section 6.8, MC simulations employ representative samples or so-called ‘notional’ particles. The principal challenge in constructing an MC algorithm is thus to define appropriate rules for the rates of change of the notional-particle variables so that they have statistical properties identical to fU,φ(V, ψ; x, t). The reader should, however, keep in mind that the necessarily finite ensemble of notional particles provides only a (poor) estimate of fu, φ. When developing MC algorithms, it will thus be important to consider the magnitude of the estimation errors and to develop ways to control them.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.