Given a positive integer
$n$, a finite field
${{\mathbb{F}}_{q}}$ of
$q$ elements (
$q$ odd), and a non-degenerate symmetric bilinear form
$B$ on
$\mathbb{F}_{q}^{n}$, we determine the largest possible cardinality of pairwise
$B$-orthogonal subsets
$\varepsilon \,\subseteq \,\mathbb{F}_{q}^{n}$, that is, for any two vectors
$x,\,y\,\in \,\varepsilon $, one has
$B(x,\,y)\,=\,0$.