We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 5 delves into divergences and distance measures, which are crucial for comparing quantum states. It begins with classical divergences such as the Kullback–Leibler and Jensen–Shannon, then advances to their quantum counterparts, discussing their optimal characteristics. Influenced by quantum resource theories, these quantum extensions provide foundational insights into the robust tools of resource theories. The chapter concentrates on particular divergences that serve as true metrics, including the trace distance and a variant of the fidelity, and explores the concept of distance between subnormalized states, which is essential in the context of quantum measurements. It emphasizes the purified distance, a useful tool for understanding the entanglement cost of quantum systems, setting the stage for further exploration in later chapters. The chapter offers a mathematically approachable survey of these measures, underscoring their practical importance in quantum information theory.
How do we define knowledge, and, crucially for cryptography, ignorance? In this chapter we lay the basis for future security proofs by formalizing the notion of knowledge of a quantum party, such as the memory of an eavesdropper, about a classical piece of information, such as a secret key. For this we introduce an appropriate measure of conditional entropy, the min-entropy, and introduce important tools to bound it using guessing games.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.