We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We find solutions that describe the levelling of a thin fluid film, comprising a non-Newtonian power-law fluid, that coats a substrate and evolves under the influence of surface tension. We consider the evolution from periodic and localized initial conditions as separate cases. The particular (similarity) solutions in each of these two cases exhibit the generic property that the profiles are weakly singular (that is, higher-order derivatives do not exist) at points where the pressure gradient vanishes. Numerical simulations of the thin film equation, with either periodic or localized initial condition, are shown to approach the appropriate particular solution.
Existence of non-negative weak solutions is shown for a full curvature thin-film model of a liquid thin film flowing down a vertical fibre. The proof is based on the application of a priori estimates derived for energy-entropy functionals. Long-time behaviour of these weak solutions is analysed and, under some additional constraints for the model parameters and initial values, convergence towards a travelling wave solution is obtained. Numerical studies of energy minimisers and travelling waves are presented to illustrate analytical results.
The main result of this paper is the proof of uniqueness of non-negative entropy solutions of the thin film equation ht + (|h|nhxxx)x = 0 for < n < 4. The uniqueness proved under assumptions that the initial data satisfy a finite β-entropy condition for some negative enough exponent β and that the solution is locally monotone at the touchdown point. The new dissipated functional recently constructed by Laugesen (Commun. Pure Appl. Anal., 4(3):613–634, 2005) is used to prove an auxiliary energy equality, and then Grönwall's lemma leads to uniqueness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.