We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The chapter starts by introducing the basic concepts of metastable and unstable states as well as time scales that control the occurrence of phase transitions. The limits for phase transitions taking place in equilibrium and out-of-equilibrium conditions are then established. In the latter case, thermally activated and athermal limits are distinguished associated with those situations where the transition is either driven or not driven by thermal fluctuations, respectively. Then the formal theory of the decay of metastable and unstable states in systems with conserved and non-conserved order parameters is developed. This general theory is in turn applied to the study of homogeneous and heterogeneous nucleation, spinodal decomposition and late stages of coarsening and domain growth.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.