We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Processing and extracting actionable information, such as fault or anomaly indicators originating from vibration telemetry, is both challenging and critical for an accurate assessment of mechanical system health and subsequent predictive maintenance. In the setting of predictive maintenance for populations of similar assets, the knowledge gained from any single asset should be leveraged to provide improved predictions across the entire population. In this paper, a novel approach to population-level health monitoring is presented adopting a transfer learning approach. The new methodology is applied to monitor multiple rotating plant assets in a power generation scenario. The focus is on the detection of statistical anomalies as a means of identifying deviations from the typical operating regime from a time series of telemetry data. This is a challenging task because the machine is observed under different operating regimes. The proposed methodology can effectively transfer information across different assets, automatically identifying segments with common statistical characteristics and using them to enrich the training of the local supervised learning models. The proposed solution leads to a substantial reduction in mean square error relative to a baseline model.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.