We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study the last exit time that a spectrally negative Lévy process is below zero until it reaches a positive level b, denoted by $g_{\tau_b^+}$. We generalize the results of the infinite-horizon last exit time explored by Chiu and Yin (2005) by incorporating a random horizon $\tau_b^+$, which represents the first passage time above b. We derive an explicit expression for the joint Laplace transform of $g_{\tau_b^+}$ and $\tau_b^+$ by utilizing a hybrid observation scheme approach proposed by Li, Willmot, and Wong (2018). We further study the optimal prediction of $g_{\tau_b^+}$ in the $L_1$ sense, and find that the optimal stopping time is the first passage time above a level $y_b^{\ast}$, with an explicit characterization of the stopping boundary $y_b^{\ast}$. As examples, Brownian motion with drift and the Cramér–Lundberg model with exponential jumps are considered.
For a spectrally negative self-similar Markov process on $[0,\infty)$ with an a.s. finite overall supremum, we provide, in tractable detail, a kind of conditional Wiener–Hopf factorization at the maximum of the absorption time at zero, the conditioning being on the overall supremum and the jump at the overall supremum. In a companion result the Laplace transform of this absorption time (on the event that the process does not go above a given level) is identified under no other assumptions (such as the process admitting a recurrent extension and/or hitting zero continuously), generalizing some existing results in the literature.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.