We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiotherapy to the head and neck region may cause considerable radiotherapy-induced changes in the surrounding tissues. These changes are oral mucositis, hyposalivation, dental caries, osteoradionecrosis, trismus and overall impact on patients’ quality of life. Tooth-coloured synthetic materials, unlike metallic restoration, did not influence radiation dose distribution. However, their exposure to a gamma radiation therapeutic dose during treatment might cause structural and compositional changes that alter their mechanical and physical properties.
Aim:
This study intends to evaluate the effect of Co 60 gamma rays on shear bond strength and marginal adaptation of already restored tooth surfaces, to help in material selection before the onset of radiotherapy.
Materials and methods:
Hundred freshly extracted human permanent mandibular molar teeth collected and stored in a 0·2% thymol solution for disinfection and were randomly divided into two groups of 50 each, to be tested for the shear bond strength of restoration to dentin and the marginal gap at tooth–restoration interface, respectively.
Results:
ANOVA showed a significant effect of both radiotherapy (F = 40·33, p < 0·001) and restorations (134·00, p < 0·001) on the marginal gap at the interface. In the without radiotherapy group, the mean marginal gap was least in Group Z250, and in with radiation, Bulk Fill has the least mean marginal gap. The mean shear bond strength was comparatively higher for all restorations without radiation than with radiation (p < 0·001).
Findings:
Gamma radiation affects the physical or mechanical properties of tooth structure and the tooth restorative interface. Composites seem to be good restorative material when placed before the onset of radiotherapy in head and neck cancer patients.
The study aimed to evaluate the shear bond strength (SBS) of metal brackets and adhesive properties of bonded irradiated and non-irradiated teeth.
Methods:
Sixty-six extracted premolar samples were randomly divided into three groups—(a) Control group consisting of 22 non-irradiated, non-aged teeth (Group 1), (b) 22 non-irradiated, aged samples (Group 2) and (c) 22 irradiated, aged samples (Group 3). Irradiation was done using gamma irradiation with a fractionated dose of 60 Gy for 5 consecutive days per week over 6 weeks. Metal brackets were bonded on all samples with light cure adhesive and subjected to SBS test using universal testing machine. The samples were assessed under the scanning electron microscope to check for the adhesive remnant index (ARI) and tag depth.
Results:
There was a statistically significant decrease in the mean SBS of the irradiated samples compared to the non-irradiated teeth. The non-irradiated, aged samples showed a majority of ARI scoring 1 and 2. Whereas, the irradiated samples showed ARI scoring 2 and 3. Approximately, 77·3% of the non-irradiated samples showed no adhesive present on the tooth surface, and 27·2% of the irradiated samples had more than 50% adhesive present on the enamel surface.
Conclusion:
There is a statistically significant decrease in SBS of irradiated enamel compared to that of non-irradiated teeth. However, the SBS observed in the three groups was well above the ideal SBS for orthodontic bonding, that is, 5·6–6·8 MPa. The adhesive remnant was found on all samples of the irradiated group. Deeper adhesive resin tags were found in the irradiated group in the resin–enamel interface.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.