We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider a weak version of Schindler’s remarkable cardinals that may fail to be ${{\rm{\Sigma }}_2}$-reflecting. We show that the ${{\rm{\Sigma }}_2}$-reflecting weakly remarkable cardinals are exactly the remarkable cardinals, and that the existence of a non-${{\rm{\Sigma }}_2}$-reflecting weakly remarkable cardinal has higher consistency strength: it is equiconsistent with the existence of an ω-Erdős cardinal. We give an application involving gVP, the generic Vopěnka principle defined by Bagaria, Gitman, and Schindler. Namely, we show that gVP + “Ord is not ${{\rm{\Delta }}_2}$-Mahlo” and ${\text{gVP}}(\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{\Pi } _1 )$ + “there is no proper class of remarkable cardinals” are both equiconsistent with the existence of a proper class of ω-Erdős cardinals, extending results of Bagaria, Gitman, Hamkins, and Schindler.
We generalise the α-Ramsey cardinals introduced in Holy and Schlicht (2018) for cardinals α to arbitrary ordinals α, and answer several questions posed in that paper. In particular, we show that α-Ramseys are downwards absolute to the core model K for all α of uncountable cofinality, that strategic ω-Ramsey cardinals are equiconsistent with remarkable cardinals and that strategic α-Ramsey cardinals are equiconsistent with measurable cardinals for all α > ω. We also show that the n-Ramseys satisfy indescribability properties and use them to provide a game-theoretic characterisation of completely ineffable cardinals, as well as establishing further connections between the α-Ramsey cardinals and the Ramsey-like cardinals introduced in Gitman (2011), Feng (1990), and Sharpe and Welch (2011).
I analyze the hierarchies of the bounded resurrection axioms and their “virtual” versions, the virtual bounded resurrection axioms, for several classes of forcings (the emphasis being on the subcomplete forcings). I analyze these axioms in terms of implications and consistency strengths. For the virtual hierarchies, I provide level-by-level equiconsistencies with an appropriate hierarchy of virtual partially super-extendible cardinals. I show that the boldface resurrection axioms for subcomplete or countably closed forcing imply the failure of Todorčević’s square at the appropriate level. I also establish connections between these hierarchies and the hierarchies of bounded and weak bounded forcing axioms.
I analyze the hierarchies of the bounded and the weak bounded forcing axioms, with a focus on their versions for the class of subcomplete forcings, in terms of implications and consistency strengths. For the weak hierarchy, I provide level-by-level equiconsistencies with an appropriate hierarchy of partially remarkable cardinals. I also show that the subcomplete forcing axiom implies Larson’s ordinal reflection principle at ω2, and that its effect on the failure of weak squares is very similar to that of Martin’s Maximum.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.