We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For relevant logics, the admissibility of the rule of proof $\gamma $ has played a significant historical role in the development of relevant logics. For first-order logics, however, there have been only a handful of $\gamma $-admissibility proofs for a select few logics. Here we show that, for each logic L of a wide range of propositional relevant logics for which excluded middle is valid (with fusion and the Ackermann truth constant), the first-order extensions QL and LQ admit $\gamma $. Specifically, these are particular “conventionally normal” extensions of the logic $\mathbf {G}^{g,d}$, which is the least propositional relevant logic (with the usual relational semantics) that admits $\gamma $ by the method of normal models. We also note the circumstances in which our results apply to logics without fusion and the Ackermann truth constant.
Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail the relation between the demand that classical possible worlds have Tarskian truth conditions and incompleteness results in quantified relevant logics.
Here, I combine the semantics of Mares and Goldblatt [20] and Seki [29, 30] to develop a semantics for quantified modal relevant logics extending
${\bf B}$
. The combination requires demonstrating that the Mares–Goldblatt approach is apt for quantified extensions of
${\bf B}$
and other relevant logics, but no significant bridging principles are needed. The result is a single semantic approach for quantified modal relevant logics. Within this framework, I discuss the requirements a quantified modal relevant logic must satisfy to be “sufficiently classical” in its modal fragment, where frame conditions are given that work for positive fragments of logics. The roles of the Barcan formula and its converse are also investigated.
The chapter discusses the naïve conception of set and criticizes attempts to rehabilitate it by modifying the logic of set theory. The focus is on the proposal that the Naïve Comprehension Schema – which formally captures the thesis that every condition determines a set – is to be saved by adopting a paraconsistent logic. Three strategies for doing so are distinguished: the material strategy, the relevant strategy and the model-theoretic strategy. It is shown that these strategies lead to set theories that are either too weak or ad hoc or give up on the idea that sets are genuinely extensional entities.
Analogues of Scott’s isomorphism theorem, Karp’s theorem as well as results on lack of compactness and strong completeness are established for infinitary propositional relevant logics. An “interpolation theorem” (of a particular sort introduced by Barwise and van Benthem) for the infinitary quantificational boolean logic L∞ω holds. This yields a preservation result characterizing the expressive power of infinitary relevant languages with absurdity using the model-theoretic relation of relevant directed bisimulation as well as a Beth definability property.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.