We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter addresses generalizations of the Schrödinger equation. It tries to convey that the Schrödinger equation is not the whole story when it comes to quantum physics. This is illustrated by expanding the framework in two rather orthogonal directions: relativistic quantum physics and open quantum systems. The former is introduced by taking the Klein–Gordon equation as the starting point, before shifting attention to the Dirac equation. Its time-independent version is solved numerically for a one-dimensional example, and its relation to the Schrödinger equation is derived. Also here, the Pauli matrices play crucial roles. The notion of open quantum systems is motivated by the fact that it is hard to keep a quantum system completely isolated from its surroundings – and that this necessitates a different approach than the one provided by wave functions. To this end, reduced density matrices and the notion of master equations are introduced. It is explained why master equations of the form of the generic Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) equation are desirable. Two particular phenomena following this equation are studied quantitatively: amplitude damping for a single quantum bit system and particle capture in a confining potential. Again, these examples draw directly on previous ones.
The most fundamental characteristic of a physical system can often be deduced from its behaviour under discrete symmetry transformations, such as time reversal, parity and chirality. Here, we review some of the basic symmetry properties of the relativistic quantum theories for free electrons in ($2+1$)- and ($1+1$)-dimensional spacetime. Additional flavour degrees of freedom are necessary to properly define symmetry operations in ($2+1$) dimensions, and are generally present in physical realizations of such systems, for example in single sheets of graphite. We find that there exist two possibilities for defining any flavour-coupling discrete symmetry operation of the two-flavour ($2+1$)-dimensional Dirac theory. Some physical implications of this previously unnoticed duplicity are discussed.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.