We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter introduces quantum resource theories (QRTs), tracing their evolution and key principles, starting from physics’ quest to unify distinct phenomena into a single framework. It highlights the unification of electricity and magnetism as a pivotal advancement, setting a precedent for QRTs in quantum information science. Quantum resource theories categorize physical system attributes as “resources,” notably transforming the role of quantum entanglement from mere theoretical interest to a crucial element in quantum communication and computation.
The chapter further describes the book’s layout and educational strategy, designed to offer a comprehensive understanding of QRTs. It explores the application of quantum resources in fields like quantum computing and thermodynamics, presenting a unique viewpoint on subjects such as entropy and nonlocality. Emphasizing on axiomatic beginning followed by practical uses, the book serves as a vital resource for both beginners and experts in quantum information science, preparing readers to navigate the complex terrain of QRTs and highlighting their potential to advance quantum science and technology.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.