We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We are now able to deduce the Lorentz transformation, relating two inertial frames. We examine three paradoxes, namely the famous twins paradox, the pole-in-the-barn paradox, and the so-called Bell's spaceships paradox. We also take another look at the relationship with electromagnetism.
The laws of Newtonian mechanics have to be changed to be consistent with the principles of special relativity introduced in the previous chapter. This chapter describes special relativistic mechanics from a four-dimensional, spacetime point of view. Newtonian mechanics is an approximation to this mechanics of special relativity that is appropriate when motion is at speeds much less than the velocity of light in a particular inertial frame. We begin with the central idea of four-vectors, defined as a directed line segment in four-dimensional flat spacetime, and how to manipulate them. Special relativistic kinematics shows how four-vectors are used for describing the motion of a particle in spacetime terms. Concepts such as four-velocity and four-momentum are introduced. We will posit the principle of extremal proper time for a free particle in curved spacetime, and use it to derive the free particle equation of motion.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.