We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Antidepressant medications are widely prescribed for depression and other uses. They are considered a first-line treatment for major depressive disorder. We examine the lack of support for the mechanistic idea that neurotransmitters affect and are affected by these medications. Few people experience significant benefit from their use when compared with the effects of placebos. We consider several ethical issues associated with antidepressants, including conflicts of interest among the committees recommending their use, and examine a study that suffered from spin and other issues of integrity. The chapter examines potential alternatives to antidepressant medications for those with depression.
Patient expectancy is an important source of placebo effects in antidepressant clinical trials, but all prior studies measured expectancy prior to the initiation of medication treatment. Little is known about how expectancy changes during the course of treatment and how such changes influence clinical outcome. Consequently, we undertook the first analysis to date of in-treatment expectancy during antidepressant treatment to identify its clinical and demographic correlates, typical trajectories, and associations with treatment outcome.
Methods
Data were combined from two randomized controlled trials of antidepressant medication for major depressive disorder in which baseline and in-treatment expectancy assessments were available. Machine learning methods were used to identify pre-treatment clinical and demographic predictors of expectancy. Multilevel models were implemented to test the effects of expectancy on subsequent treatment outcome, disentangling within- and between-patient effects.
Results
Random forest analyses demonstrated that whereas more severe depressive symptoms predicted lower pre-treatment expectancy, in-treatment expectancy was unrelated to symptom severity. At each measurement point, increased in-treatment patient expectancy significantly predicted decreased depressive symptoms at the following measurement (B = −0.45, t = −3.04, p = 0.003). The greater the gap between expected treatment outcomes and actual depressive severity, the greater the subsequent symptom reductions were (B = 0.49, t = 2.33, p = 0.02).
Conclusions
Greater in-treatment patient expectancy is associated with greater subsequent depressive symptom reduction. These findings suggest that clinicians may benefit from monitoring and optimizing patient expectancy during antidepressant treatment. Expectancy may represent another treatment parameter, similar to medication compliance and side effects, to be regularly monitored during antidepressant clinical management.