We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 3 explores open quantum systems, emphasizing their interactions with environments, unlike isolated closed systems. It introduces the concept of generalized measurements and mixed quantum states, reflecting the complex scenarios arising from these interactions. The chapter utilizes Positive Operator Valued Measures (POVMs) to describe generalized measurements, broadening the conventional approach to quantum measurements.
A significant focus is on the evolution of open systems through quantum channels, which illustrate the transfer or transformation of quantum information amid noise and external disturbances. This section underpins the dynamics open systems exhibit, critical for understanding quantum computing and information processing in realistic settings.
Through practical examples, the chapter elucidates how environmental factors influence quantum information, vital for applications in quantum technologies. It aims to equip readers with foundational knowledge of open quantum systems, highlighting their importance in the broader context of quantum mechanics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.