We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce a comprehensive method for establishing stochastic orders among order statistics in the independent and identically distributed case. This approach relies on the assumption that the underlying distribution is linked to a reference distribution through a transform order. Notably, this method exhibits broad applicability, particularly since several well-known nonparametric distribution families can be defined using relevant transform orders, including the convex and the star transform orders. Moreover, for convex-ordered families, we show that an application of Jensen’s inequality gives bounds for the probability that a random variable exceeds the expected value of its corresponding order statistic.
Chapter 5 examines the normal distribution, its relationship to z-scores, and its applicability to probability theory and statistical inference. z-scores or standardized scores are values depicting how far a particular score is from the mean in standard deviation units. Different proportions of the normal curve area are associated with z-scores. The conversions of raw scores to z-scores and z-scores to raw scores are illustrated. Nonnormal distributions which differ markedly from normal curve characteristics are also described. The importance of the normal curve as a probability distribution, along with a brief introduction to probability, is discussed.
The final chapter of the textbook covers logistic regression, a statistical test used when the dependent variable is dichotomous or binary.OLS regression should not be used when the dependent variable is binary.The first discussion focuses on the limitations of OLS in this situation.The logit equation is presented and then steps for conducting a logistic regression in the R Commander are explained.Interpretation of the logistic regression output using odds ratios, percent change in odds, and predicted probabilities is discussed.Applied examples are used to better illustrate when to use logistic regression.
Uncertainty is a part of everyday life. We live with a range of situations that inherently have an element of uncertainty in them – for example, crossing the road, going on holiday, or making a major purchase – but we often ignore the embedded chance in these activities. Risk is acknowledged in many activities, and much effort is expended in identifying these risks and minimising any potential negative outcomes. In schools, for example, a risk assessment is required prior to any excursion with children. Probability is the strand of mathematics that addresses uncertainty. This chapter explores ideas relating to probability in the mathematics classroom.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.