We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Parkinson’s disease (PD) is characterized by the inability of dopamine production from amino acids. Therefore, changes in amino acid profile in PD patients are very critical for understanding disease development. Determination of amino acid levels in PD patients with a cumulative approach may enlighten the disease pathophysiology.
Methods:
A systematic search was performed until February 2023, resulting in 733 articles in PubMed, Web of Science and Scopus databases to evaluate the serum amino acid profile of PD patients. Relevant articles in English with mean/standard deviation values of serum amino acid levels of patients and their healthy controls were included in the meta-analysis.
Results:
Our results suggest that valine, proline, ornithine and homocysteine levels were increased, while aspartate, citrulline, lysine and serine levels were significantly decreased in PD patients compared to healthy controls. Homocysteine showed positive correlations with glutamate and ornithine levels. We also analyzed the disease stage parameters: Unified Parkinson’s Disease Rating Scale III (UPDRS III) score, Hoehn–Yahr Stage Score, disease duration and levodopa equivalent daily dose (LEDD) of patients. It was observed that LEDD has a negative correlation with arginine levels in patients. UPDRS III score is negatively correlated with phenylalanine levels, and it also tends to show a negative correlation with tyrosine levels. Disease duration tends to be negatively correlated with citrulline levels in PD patients.
Conclusion:
This cumulative analysis shows evidence of the relation between the mechanisms underlying amino acid metabolism in PD, which may have a great impact on disease development and new therapeutic strategies.
A number of recent investigations have focused on the neurobiology of obsessive–compulsive personality disorder (OCPD). However, there have been few reviews of this literature with no detailed model proposed. We therefore undertook a systematic review of these investigations, aiming to map the available evidence and investigate whether it is possible to formulate a detailed model of the neurobiology of OCPD.
Methods
OCPD can be considered from both categorical and dimensional perspectives. An electronic search was therefore conducted using terms that would address not only OCPD as a category, but also related constructs, such as perfectionism, that would capture research on neuropsychology, neuroimaging, neurochemistry, and neurogenetics.
Results
A total of 1059 articles were retrieved, with 87 ultimately selected for abstract screening, resulting in a final selection of 49 articles focusing on neurobiological investigations relevant to OCPD. Impaired executive function and cognitive inflexibility are common neuropsychological traits in this condition, and suggest that obsessive–compulsive disorder (OCD) and OCPD may lie on a continuum. However, neuroimaging studies in OCPD indicate the involvement of specific neurocircuitry, including the precuneus and amygdala, and so suggest that OCD and OCPD may have important differences. Although OCPD has a heritable component, we found no well-powered genetic studies of OCPD.
Conclusion
Although knowledge in this area has advanced, there are insufficient data on which to base a comprehensive model of the neurobiology of OCPD. Given the clinical importance of OCPD, further work to understand the mechanisms that underpin this condition is warranted.
Psychosis is a recognised feature of several psychiatric disorders and it causes patients significant distress and morbidity. It is therefore important to keep knowledge of possible risk factors for psychosis up to date and to have an overview model on which further learning can be structured. This article concludes a three-part series. It gives a review of evidence regarding common pathways by which many risk factors come together to influence the development of psychosis and finalises our suggested overview model, a psychosis risk timeline. The three primary pathways considered are based on the major themes identified in this narrative review of recent literature and they focus on neurological, neurochemical and inflammatory changes. We link each back to the factors discussed in the first and second parts of this series that alter psychosis risk through different mechanisms and at different stages throughout life. We then consider and summarise key aspects of this complex topic with the aim of providing current and future clinicians with a model on which to build their knowledge and begin to access and understand current psychosis research and implications for future preventive work.
LEARNING OBJECTIVES
After reading this article you will be able to:
• give an overview of common pathways thought to link identified risk factors with psychosis development
• understand neurochemical, neurostructural and inflammatory changes associated with psychosis
• demonstrate increased knowledge of possible preventive strategies.
Magnetic resonance spectroscopy (MRS) is a non-invasive in vivo method used to quantify metabolites that are relevant to a wide range of brain processes. This paper briefly describes neuroimaging using MRS and provides a systematic review of its application to anxiety disorders.
Method:
A literature review was performed in the PubMed, Lilacs and Scielo databases using the keywords spectroscopy and anxiety disorder. References of selected articles were also hand-searched for additional citations.
Results:
Recent studies have shown that there are significant metabolic differences between patients with anxiety disorders and healthy controls in various regions of the brain. Changes were mainly found in N-acetylaspartate, which is associated with neuronal viability, but some of them were also seen in creatine, a substance that is thought to be relatively constant among individuals with different pathological conditions.
Conclusions:
MRS is a sophisticated neuroimaging technique that has provided useful insights into the biochemical and neurobiological basis of many anxiety disorders. Nevertheless, its utilization in some anxiety disorders is still modest, particularly social phobia and generalised anxiety. Although it is an extremely useful advance in neuroimaging, further research in other brain areas and patient populations is highly advisable.
This chapter discusses the neurochemistry of excessive daytime sleepiness (EDS) with various etiologies. It presents a brief discussion of basic sleep physiology and narcolepsy symptoms to explain the specific neurochemistry of hypersomnia. The significant roles hypocretin deficiency and postnatal cell death of hypocretin neurons as the major pathophysiological process underlying narcolepsy with cataplexy emerged from a decade of investigation, employing both animal and human models. The chapter talks about idiopathic hypersomnia and hypocretin non-deficient primary hypersomnia. It explains how hypocretin ligand deficiency may cause narcolepsy phenotype. Narcolepsy symptoms can also occur during the course of other neurological conditions, and discovery of hypocretin ligand deficiency in idiopathic narcolepsy has led to new insights into the pathophysiology of symptomatic narcolepsy and EDS. The metabolic data may support the hypothesis of a primary deficient arousal system in patients with idiopathic hypersomnia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.