We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Wellbeing is relatively stable over the life span. However, individuals differ in this stability and change. One explanation for these differences could be the influence of different genetic or environmental factors on wellbeing over time.
Methods
To investigate causes of stability and change of wellbeing across the lifespan, we used cohort-sequential data on wellbeing from twins and their siblings of the Netherlands Twin Register (NTR) (total N = 46.885, 56% females). We organized wellbeing data in multiple age groups, from childhood (age 5), to adolescence, up to old age (age 61+). Applying a longitudinal genetic simplex model, we investigated the phenotypic stability of wellbeing and continuity and change in genetic and environmental influences.
Results
Wellbeing peaked in childhood, decreased during adolescence, and stabilized during adulthood. In childhood and adolescence, around 40% of the individual differences was explained by genetic effects. The heritability decreased toward old adulthood (35–24%) and the contribution of unique environmental effects increased to 76%. Environmental innovation was found at every age, whereas genetic innovation was only observed during adolescence (10–18 years). In childhood and adulthood, the absence of genetic innovation indicates a stable underlying set of genes influencing wellbeing during these life phases.
Conclusion
These findings provide insights into the stability and change of wellbeing and the genetic and environmental influences across the lifespan. Genetic effects were mostly stable, except in adolescence, whereas the environmental innovation at every age suggests that changing environmental factors are a source of changes in individual differences in wellbeing over time.
The influence of genetic factors on major depressive disorder is lower than on other psychiatric disorders. Heritability estimates mainly derive from cross-sectional studies, and knowledge on the longitudinal aetiology of symptoms of anxiety and depression (SxAnxDep) across the lifespan is limited. We aimed to assess phenotypic, genetic and environmental stability in SxAnxDep between ages 3 and 63 years.
Method.
We used a cohort-sequential design combining data from 49 524 twins followed from birth to age ⩾20 years, and from adolescence into adulthood. SxAnxDep were assessed repeatedly with a maximum of eight assessments over a 25-year period. Data were ordered in 30 age groups and analysed with longitudinal genetic models.
Results.
Over age, there was a significant increase during adolescence in mean scores with sex differences (women>men) emerging. Heritability was high in childhood and decreased to 30–40% during adulthood. This decrease in heritability was due to an increase in environmental variance. Phenotypic stability was moderate in children (correlations across ages ~0.5) and high in adolescents (r = 0.6), young adults (r = 0.7), and adults (r = 0.8). Longitudinal stability was mostly attributable to genetic factors. During childhood and adolescence there was also significant genetic innovation, which was absent in adults. Environmental effects contributed to short-term stability.
Conclusions.
The substantial stability in SxAnxDep is mainly due to genetic effects. The importance of environmental effects increases with age and explains the relatively low heritability of depression in adults. The environmental effects are transient, but the contribution to stability increases with age.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.