We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There are many results in the literature where superstablity-like independence notions, without any categoricity assumptions, have been used to show the existence of larger models. In this paper we show that stability is enough to construct larger models for small cardinals assuming a mild locality condition for Galois types.Theorem 0.1.
Suppose $\lambda <2^{\aleph _0}$. Let ${\mathbf {K}}$ be an abstract elementary class with $\lambda \geq {\operatorname {LS}}({\mathbf {K}})$. Assume ${\mathbf {K}}$ has amalgamation in $\lambda $, no maximal model in $\lambda $, and is stable in $\lambda $. If ${\mathbf {K}}$ is $(<\lambda ^+, \lambda )$-local, then ${\mathbf {K}}$ has a model of cardinality $\lambda ^{++}$.
The set theoretic assumption that $\lambda <2^{\aleph _0}$ and model theoretic assumption of stability in $\lambda $ can be weakened to the model theoretic assumptions that $|{\mathbf {S}}^{na}(M)|< 2^{\aleph _0}$ for every $M \in {\mathbf {K}}_\lambda $ and stability for $\lambda $-algebraic types in $\lambda $. This is a significant improvement of Theorem 0.1, as the result holds on some unstable abstract elementary classes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.