We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Early administration of blood products to patients with hemorrhagic shock has a positive impact on morbidity and mortality. Smaller hospitals may have limited supply of blood, and air medical systems may not carry blood. The primary outcome is to quantify the number of patients meeting established physiologic criteria for blood product administration and to identify which patients receive and which ones do not receive it due to lack of availability locally.
Methods
Electronic patient care records were used to identify a retrospective cohort of patients undergoing emergent air medical transport in Ontario, Canada, who are likely to require blood. Presenting problems for blood product administration were identified. Physiologic data were extracted with criteria for transfusion used to identify patients where blood product administration is indicated.
Results
There were 11,520 emergent patient transports during the study period, with 842 (7.3%) where blood product administration was considered. Of these, 290 met established physiologic criteria for blood products, with 167 receiving blood, of which 57 received it at a hospital with a limited supply. The mean number of units administered per patient was 3.5. The remaining 123 patients meeting criteria did not receive product because none was unavailable.
Conclusion
Indications for blood product administration are present in 2.5% of patients undergoing time-sensitive air medical transport. Air medical services can enhance access to potentially lifesaving therapy in patients with hemorrhagic shock by carrying blood products, as blood may be unavailable or in limited supply locally in the majority of patients where it is indicated.
Obtaining intravenous (IV) access in patients in hemorrhagic shock is often difficult and prolonged. Failed IV attempts delay life-saving treatment. Intraosseous (IO) access may often be obtained faster than IV access. Albumin (5%) is an option for prehospital volume expansion because of the absence of interference with coagulation and platelet function.
Hypothesis/Problem
There are limited data comparing the performance of IO and IV administered 5% albumin. The aims of this study were to compare the effects of tibial IO (TIO) and IV administration of 500 mL of 5% albumin on infusion time and hemodynamic measurements of heart rate (HR), mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) in a swine model of hemorrhagic shock.
Methods
Sixteen male swine were divided into two groups: TIO and IV. All subjects were anesthetized and a Class III hemorrhage was achieved by exsanguination of 31% of estimated blood volume (EBV) from a femoral artery catheter. Following exsanguination, 500 mL of 5% albumin was administered under pressurized infusion (300 mmHg) by the TIO or IV route and infusion time was recorded. Hemodynamic measurements of HR, MAP, CO, and SV were collected before and after exsanguination and every 20 seconds for 180 seconds during 5% albumin infusion.
Results
An independent t-test determined that IV 5% albumin infusion was significantly faster compared to IO (P=.01). Mean infusion time for TIO was seven minutes 35 seconds (SD=two minutes 44 seconds) compared to four minutes 32 seconds (SD=one minute 08 seconds) in the IV group. Multivariate Analysis of Variance was performed on hemodynamic data collected during the 5% albumin infusion. Analyses indicated there were no significant differences between the TIO and IV groups relative to MAP, CO, HR, or SV (P>.05).
Conclusion
While significantly longer to infuse 5% albumin by the TIO route, the longer TIO infusion time may be negated as IO devices can be placed more quickly compared to repeated IV attempts. The lack of significant difference between the TIO and IV routes relative to hemodynamic measures indicate the TIO route is a viable route for the infusion of 5% albumin in a swine model of Class III hemorrhage.
MuirSL, SheppardLB, Maika-WilsonA, BurgertJM, Garcia-BlancoJ, JohnsonAD, CoynerJL. A Comparison of the Effects of Intraosseous and Intravenous 5% Albumin on Infusion Time and Hemodynamic Measures in a Swine Model of Hemorrhagic Shock. Prehosp Disaster Med.2016;31(4):436–442.
Optimal emergent management of traumatic hemorrhagic shock patients requires a better understanding of treatment provided in the prehospital/Emergency Medical Services (EMS) and emergency department (ED) settings.
Hypothesis/Problem
Described in this research are the initial clinical status, airway management, fluid and blood infusions, and time course of severely-injured hemorrhagic shock patients in the EMS and ED settings from the diaspirin cross-linked hemoglobin (DCLHb) clinical trial.
Methods
Data were analyzed from 17 US trauma centers gathered during a randomized, controlled, single-blinded efficacy trial of a hemoglobin solution (DCLHb) as add-on therapy versus standard therapy.
Results
Among the 98 randomized patients, the mean EMS Glasgow Coma Scale (GCS) was 10.6 (SD = 5.0), the mean EMS revised trauma score (RTS) was 6.3 (SD = 1.9), and the mean injury severity score (ISS) was 31 (SD = 17). Upon arrival to the ED, the GCS was 20% lower (7.8 (SD = 5.3) vs 9.7 (SD = 6.3)) and the RTS was 12% lower (5.3 (SD = 2.0) vs 6.0 (SD = 2.1)) than EMS values in blunt trauma patients (P < .001). By ED disposition, 80% of patients (78/98) were intubated. Rapid sequence intubation (RSI) was utilized in 77% (60/78), most often utilizing succinylcholine (65%) and midazolam (50%). The mean crystalloid volume infused was 4.2 L (SD = 3.4 L), 80% of which was infused within the ED. Emergency department blood transfusion occurred in 62% of patients, with an average transfused volume of 1.2 L (SD = 2.0 L). Blunt trauma patients received 2.1 times more total fluids (7.4 L vs 3.5 L, < .001) and 2.4 times more blood (2.4 L vs 1.0 L, P < .001). The mean time of patients taken from injury site to operating room (OR) was 113 minutes (SD = 87 minutes). Twenty-one (30%) of the 70 patients taken to the OR from the ED were sent within 60 minutes of the estimated injury time. Penetrating trauma patients were taken to the OR 52% sooner than blunt trauma patients (72 minutes vs 149 minutes, P < .001).
Conclusion
Both GCS and RTS decreased prior to ED arrival in blunt trauma patients. Intubation was performed using RSI, and crystalloid infusion of three times the estimated blood loss volume (L) and blood transfusion of the estimated blood loss volume (L) were provided in the EMS and ED settings. Surgical intervention for these trauma patients most often occurred more than one hour from the time of injury. Penetrating trauma patients received surgical intervention more rapidly than those with a blunt trauma mechanism.
SloanEP, KoenigsbergM, WeirWB, ClarkJM, O'ConnorR, OlingerM, CydulkaR. Emergency Resuscitation of Patients Enrolled in the US Diaspirin Cross-linked Hemoglobin (DCLHb) Clinical Efficacy Trial. Prehosp Disaster Med. 2015;30(1):1-8.
This chapter discusses the diagnosis, evaluation and management of solid organ abdominal trauma. It presents special circumstances which make diagnosis and management of solid organ abdominal trauma difficult in pediatric patients. The primary survey for solid organ abdominal trauma should be aimed at determining which patients need immediate laparotomy versus those that are stable for further diagnostic workup. Vital signs provide a key to hemodynamic stability. Unstable patients with blunt or penetrating trauma to the abdomen require immediate laparotomy. All patients after significant trauma, both blunt and penetrating, should receive screening AP chest radiography. Given small anteroposterior diameter and developing abdominal musculature, children are more vulnerable to blunt forces. The most likely reason for sudden deterioration in a trauma patient with solid organ injury is hemorrhagic shock; therefore more aggressive resuscitation has to be considered and the process to get patient to the OR for laparotomy is facilitated.
To study the volume effect of isotonic and hypertonic crystalloid fluid during ambulance transports after mild trauma, a prospective case-control study was initiated, using the ambulance and helicopter transport system in Stockholm.
Methods:
The hemodilution resulting from intravenous infusion of 1.0 L of Ringer's acetate solution (n = 7) or 250 ml of 7.5% sodium chloride (n = 3) over 30 minutes (min) was measured every 10 min during 1 hour when fluid therapy was instituted at the scene of an accident, or on arrival at the hospital. The dilution was studied by volume kinetic analysis and compared to that of matched, healthy controls who received the same fluid in hospital.
Result:
The hemodilution at the end of the infusions averaged 7.7% in the trauma patients and 9.1% in the controls, but the dilution was better maintained after trauma. The kinetic analysis showed that the size of the body fluid space expanded by Ringer's solution was 4.6 L and 3.8 L for the trauma and the control patients, respectively, while hypertonic saline expanded a slightly larger space. For both fluids, trauma reduced the elimination rate constant by approximately 30%.
Conclusion:
Mild trauma prolonged the intravascular persistence of isotonic and hypertonic crystalloid fluid as compared to a control group.
Fluid therapy in uncontrolled bleeding is controversial. In a previously used experimental animal model of aortic injury, the outcome often was impaired by re-bleeding that began at least 20 minutes after crystalloid fluid resuscitation was initiated. Therefore, it was hypothesized that re-bleeding might be avoided if volume loading is carried out for 20 minutes and then disconstinued.
Methods:
Ten minutes after a 5 mm laceration was produced in the infra-renal aorta on eight anesthetized pigs, they received a 20-minute intravenous infusion of Ringer's solution in the ratio of 1:1 to the expected blood loss. Hemodynamics were studied for 120 minutes using arterial and pulmonary artery catheters and blood flow probes placed proximal and distal to the aortic lesion and around the left renal artery and portal vein.
Results:
The bleeding stopped between three and four minutes after the onset of bleeding. The blood flow rate dropped to 38% (mean) of baseline in the splanchnic region, to 31% in the upper aorta, and to 13% in the kidney. The flow rates and the oxygen consumption increased transiently during fluid resuscitation, but never reached baseline levels. Re-bleeding amounted to about 15% of the initial bleeding and occurred in only three of the animals. Four of the pigs died of shock within 90 minutes (range 47–85 minutes) after the aortic injury.
Conclusion:
Short-term crystalloid fluid therapy in uncontrolled aortic hemorrhage transiently improved the hemodynamic status and the oxygen consumption following the initial bleeding. Furthermore, the infusion did not cause re-bleeding of more than 100 ml, which occurred in previously conducted experiments when the infusion was continued for more than 20 minutes.
The safe and timely provision of blood is of crucial importance in the prevention and mitigation of morbidity and mortality due to trauma. The use of blood in the treatment of war casualties, soldiers as well as civilians, was analyzed retrospectively and the impact of massive blood transfusion on blood banking services and reserves of blood during the war in Sarajevo was assessed.
Methods:
A retrospective analysis of 3,215 war casualties (1,815 civilians plus 1,400 military) who arrived to the casualty reception center of the State Hospital of Sarajevo during the period 11 May through 31 October 1992 was performed. Blood usage was reviewed in three stages: within 24 hours (h) of admission, after seven days of hospitalization, and after 30 days of hospitalization. The types of injury, survival rate, and blood-usage rate in a sample of 37 war casualties who required massive blood transfusions (MBT) during the period 11 May through 31 December 1992 was examined.
Results:
The civilian casualty rate in this series of patients was 56.5%. A total of 1,217/3,215 (37.9%) casualties were hospitalized. In this study, 16% (504/3,215) of total number of persons wounded received blood transfusion. Of these patients, 504/1,217 (41.4%) were transfused. A total of 971.1 liters of blood were transfused through 31 October 1992; 68% within 24 h of admission, 91% within the first seven days, and 100% within the first 30 days. From a total of 37 MBT recipients, 36 (97%) were injured by firearms. Survival rate among MBT patients was 30%. The MBT recipients comprised 2% of total hospitalized patients and 6% of total number of patients transfused. The amount of blood needed during episodes of MBT was 15% of total blood used through 31 December 1992.
Conclusions:
Based on these data, prospective requirements for blood usage should take into account casualty triage, as follows: for each casualty transported to the hospital, hospitalized, or transfused, 0.302, 0.796, and 1.912 liters of blood respectively, will be needed for the first 30 days of treatment. Recipients of massive blood transfusions are a significant drain on blood reserves in war. This experience can be utilized in the development of revised guidelines for blood usage for an entire population affected by war.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.