We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G be a finite group whose order is not divisible by the characteristic of the ground field $\mathbb {F}$. We prove a decomposition of the Hochschild homology groups of the equivariant dg category $\mathscr {C}^G$ associated with the action of G on a small dg category $\mathscr {C}$ which admits finite direct sums. When, in addition, the ground field $\mathbb {F}$ is algebraically closed this decomposition is related to a categorical action of $\text {Rep}(G)$ on $\mathscr {C}^G$ and the resulting action of the representation ring $R_{\mathbb {F}}(G)$ on $HH_\bullet (\mathscr {C}^G)$.
We show that linearly repetitive weighted Delone sets in groups of polynomial growth have a uniquely ergodic hull. This result applies in particular to the linearly repetitive weighted Delone sets in homogeneous Lie groups constructed in the companion paper [S. Beckus, T. Hartnick and F. Pogorzelski. Symbolic substitution beyond Abelian groups. Preprint, 2021, arXiv:2109.15210] using symbolic substitution methods. More generally, using the quasi-tiling method of Ornstein and Weiss, we establish unique ergodicity of hulls of weighted Delone sets in amenable unimodular locally compact second countable groups under a new repetitivity condition which we call tempered repetitivity. For this purpose, we establish a general sub-additive convergence theorem, which also has applications concerning the existence of Banach densities and uniform approximation of the spectral distribution function of finite hopping range operators on Cayley graphs.
We prove a Khintchine-type recurrence theorem for pairs of endomorphisms of a countable discrete abelian group. As a special case of the main result, if $\Gamma $ is a countable discrete abelian group, $\varphi , \psi \in \mathrm {End}(\Gamma )$, and $\psi - \varphi $ is an injective endomorphism with finite index image, then for any ergodic measure-preserving $\Gamma $-system $( X, {\mathcal {X}}, \mu , (T_g)_{g \in \Gamma } )$, any measurable set $A \in {\mathcal {X}}$, and any ${\varepsilon }> 0$, there is a syndetic set of $g \in \Gamma$ such that $\mu ( A \cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A ) > \mu(A)^3 - \varepsilon$. This generalizes the main results of Ackelsberg et al [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] and essentially answers a question left open in that paper [Question 1.12; Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107]. For the group $\Gamma = {\mathbb {Z}}^d$, the result applies to pairs of endomorphisms given by matrices whose difference is non-singular. The key ingredients in the proof are: (1) a recent result obtained jointly with Bergelson and Shalom [Khintchine-type recurrence for 3-point configurations. Forum Math. Sigma10 (2022), Paper no. e107] that says that the relevant ergodic averages are controlled by a characteristic factor closely related to the quasi-affine (or Conze–Lesigne) factor; (2) an extension trick to reduce to systems with well-behaved (with respect to $\varphi $ and $\psi $) discrete spectrum; and (3) a description of Mackey groups associated to quasi-affine cocycles over rotational systems with well-behaved discrete spectrum.
We consider the notion of strong self-absorption for continuous actions of locally compact groups on the hyperfinite II$_1$ factor and characterize when such an action is tensorially absorbed by another given action on any separably acting von Neumann algebra. This extends the well-known McDuff property for von Neumann algebras and is analogous to the core theorems around strongly self-absorbing C$^*$-dynamics. Given a countable discrete group G and an amenable action $G\curvearrowright M$ on any separably acting semifinite von Neumann algebra, we establish a type of measurable local-to-global principle: If a given strongly self-absorbing G-action is suitably absorbed at the level of each fibre in the direct integral decomposition of M, then it is tensorially absorbed by the action on M. As a direct application of Ocneanu’s theorem, we deduce that if M has the McDuff property, then every amenable G-action on M has the equivariant McDuff property, regardless whether M is assumed to be injective or not. By employing Tomita–Takesaki theory, we can extend the latter result to the general case, where M is not assumed to be semifinite.
In this work we prove that every shift of finite type (SFT), sofic shift, and strongly irreducible shift on locally finite groups has strong dynamical properties. These properties include that every sofic shift is an SFT, every SFT is strongly irreducible, every strongly irreducible shift is an SFT, every SFT is entropy minimal, and every SFT has a unique measure of maximal entropy, among others. In addition, we show that if every SFT on a group is strongly irreducible, or if every sofic shift is an SFT, then the group must be locally finite, and this extends to all of the properties we explore. These results are collected in two main theorems which characterize the local finiteness of groups by purely dynamical properties. In pursuit of these results, we present a formal construction of free extension shifts on a group G, which takes a shift on a subgroup H of G, and naturally extends it to a shift on all of G.
For a finite group $G$ of not prime power order, Oliver showed that the obstruction for a finite CW-complex $F$ to be the fixed point set of a contractible finite $G$-CW-complex is determined by the Euler characteristic $\chi (F)$. (He also has similar results for compact Lie group actions.) We show that the analogous problem for $F$ to be the fixed point set of a finite $G$-CW-complex of some given homotopy type is still determined by the Euler characteristic. Using trace maps on $K_0$ [2, 7, 18], we also see that there are interesting roles for the fundamental group and the component structure of the fixed point set.
Smith theory says that the fixed point set of a semi-free action of a group $G$ on a contractible space is ${\mathbb {Z}}_p$-acyclic for any prime factor $p$ of the order of $G$. Jones proved the converse of Smith theory for the case $G$ is a cyclic group acting semi-freely on contractible, finite CW-complexes. We extend the theory to semi-free group actions on finite CW-complexes of given homotopy types, in various settings. In particular, the converse of Smith theory holds if and only if a certain $K$-theoretical obstruction vanishes. We also give some examples that show the geometrical effects of different types of $K$-theoretical obstructions.
The Novikov conjecture is put into a larger context, and we explain when the conjectures one is led to in this way tend to be deep facts about the fundamental group, and when they are theorems. We give examples from differential geometry, algebraic geometry, and transformation groups.
We show that the moduli stack of admissible-covers of prestable curves is an algebraic stack, loosely following [1, App. B]. As preparation, we discuss finite group actions on algebraic spaces.
For a pseudo-Anosov flow $\varphi $ without perfect fits on a closed $3$-manifold, Agol–Guéritaud produce a veering triangulation $\tau $ on the manifold M obtained by deleting the singular orbits of $\varphi $. We show that $\tau $ can be realized in M so that its 2-skeleton is positively transverse to $\varphi $, and that the combinatorially defined flow graph $\Phi $ embedded in M uniformly codes the orbits of $\varphi $ in a precise sense. Together with these facts, we use a modified version of the veering polynomial, previously introduced by the authors, to compute the growth rates of the closed orbits of $\varphi $ after cutting M along certain transverse surfaces, thereby generalizing the work of McMullen in the fibered setting. These results are new even in the case where the transverse surface represents a class in the boundary of a fibered cone of M. Our work can be used to study the flow $\varphi $ on the original closed manifold. Applications include counting growth rates of closed orbits after cutting along closed transverse surfaces, defining a continuous, convex entropy function on the ‘positive’ cone in $H^1$ of the cut-open manifold, and answering a question of Leininger about the closure of the set of all stretch factors arising as monodromies within a single fibered cone of a $3$-manifold. This last application connects to the study of endperiodic automorphisms of infinite-type surfaces and the growth rates of their periodic points.
We establish central limit theorems for an action of a group $G$ on a hyperbolic space $X$ with respect to the counting measure on a Cayley graph of $G$. Our techniques allow us to remove the usual assumptions of properness and smoothness of the space, or cocompactness of the action. We provide several applications which require our general framework, including to lengths of geodesics in geometrically finite manifolds and to intersection numbers with submanifolds.
We show that every isometric action on a Cantor set is conjugate to an inverse limit of actions on finite sets; and that every faithful isometric action by a finitely generated amenable group is residually finite.
Wick polynomials and Wick products are studied in the context of noncommutative probability theory. It is shown that free, Boolean, and conditionally free Wick polynomials can be defined and related through the action of the group of characters over a particular Hopf algebra. These results generalize our previous developments of a Hopf-algebraic approach to cumulants and Wick products in classical probability theory.
Let M be a geometrically finite acylindrical hyperbolic
$3$
-manifold and let
$M^*$
denote the interior of the convex core of M. We show that any geodesic plane in
$M^*$
is either closed or dense, and that there are only countably many closed geodesic planes in
$M^*$
. These results were obtained by McMullen, Mohammadi and Oh [Geodesic planes in hyperbolic 3-manifolds. Invent. Math.209 (2017), 425–461; Geodesic planes in the convex core of an acylindrical 3-manifold. Duke Math. J., to appear, Preprint, 2018, arXiv:1802.03853] when M is convex cocompact. As a corollary, we obtain that when M covers an arithmetic hyperbolic
$3$
-manifold
$M_0$
, the topological behavior of a geodesic plane in
$M^*$
is governed by that of the corresponding plane in
$M_0$
. We construct a counterexample of this phenomenon when
$M_0$
is non-arithmetic.
A probability measure is a characteristic measure of a topological dynamical system if it is invariant to the automorphism group of the system. We show that zero entropy shifts always admit characteristic measures. We use similar techniques to show that automorphism groups of minimal zero entropy shifts are sofic.
We adapt techniques developed by Hochman to prove a non-singular ergodic theorem for
$\mathbb {Z}^d$
-actions where the sums are over rectangles with side lengths increasing at arbitrary rates, and in particular are not necessarily balls of a norm. This result is applied to show that the critical dimensions with respect to sequences of such rectangles are invariants of metric isomorphism. These invariants are calculated for the natural action of
$\mathbb {Z}^d$
on a product of d measure spaces.
Let G be a semisimple real algebraic group defined over
${\mathbb {Q}}$
,
$\Gamma $
be an arithmetic subgroup of G, and T be a maximal
${\mathbb {R}}$
-split torus. A trajectory in
$G/\Gamma $
is divergent if eventually it leaves every compact subset. In some cases there is a finite collection of explicit algebraic data which accounts for the divergence. If this is the case, the divergent trajectory is called obvious. Given a closed cone in T, we study the existence of non-obvious divergent trajectories under its action in
$G\kern-1pt{/}\kern-1pt\Gamma $
. We get a sufficient condition for the existence of a non-obvious divergence trajectory in the general case, and a full classification under the assumption that
$\mathrm {rank}_{{\mathbb {Q}}}G=\mathrm {rank}_{{\mathbb {R}}}G=2$
.
We show that for good measures, the set of homeomorphisms of Cantor space which preserve that measure and which have no invariant clopen sets contains a residual set of homeomorphisms which are uniquely ergodic. Additionally, we show that for refinable Bernoulli trial measures, the same set of homeomorphisms contains a residual set of homeomorphisms which admit only finitely many ergodic measures.
Let $\operatorname{Homeo}_{+}(D_{n}^{2})$ be the group of orientation-preserving homeomorphisms of $D^{2}$ fixing the boundary pointwise and $n$ marked points as a set. The Nielsen realization problem for the braid group asks whether the natural projection $p_{n}:\operatorname{Homeo}_{+}(D_{n}^{2})\rightarrow B_{n}:=\unicode[STIX]{x1D70B}_{0}(\operatorname{Homeo}_{+}(D_{n}^{2}))$ has a section over subgroups of $B_{n}$. All of the previous methods use either torsion or Thurston stability, which do not apply to the pure braid group $PB_{n}$, the subgroup of $B_{n}$ that fixes $n$ marked points pointwise. In this paper, we show that the pure braid group has no realization inside the area-preserving homeomorphisms using rotation numbers.