Wearable exoskeletons hold the potential to provide valuable physical assistance across a range of tasks, with applications steadily expanding across different scenarios. However, the lack of universally accepted testbeds and standardized protocols limits the systematic benchmarking of these devices. In response, the STEPbySTEP project, funded within the Eurobench framework, proposes a modular, sensorized, reconfigurable staircase testbed designed as a novel evaluation approach within the first European benchmarking infrastructure for robotics. This testbed, to be incorporated into the Eurobench testing facility, focuses on stairs as common yet challenging obstacles in daily life that provide a unique benchmark for exoskeleton assessment.
The primary aim of STEPbySTEP is to propose a modular framework – including a specialized staircase design, tentative metrics, and testing protocols – to aid in evaluating and comparing exoskeleton performance. Here, we present the testbed and protocols developed and validated in preliminary trials using three exoskeletons: two lower-limb exoskeletons (LLEs) and one back-support exoskeleton. The results offer initial insights into the adaptability of the staircase testbed across devices, showcasing example metrics and protocols that underscore its benchmarking potential.