We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we study the boundedness and compactness of the inclusion mapping from Dirichlet type spaces
$\mathcal {D}^{p}_{p-1 }$
to tent spaces. Meanwhile, the boundedness, compactness, and essential norm of Volterra integral operators from Dirichlet type spaces
$\mathcal {D}^{p}_{p-1 }$
to general function spaces are also investigated.
In this paper, we discuss the properties of the embedding operator $i_{\unicode[STIX]{x1D707}}^{\unicode[STIX]{x1D6EC}}:M_{\unicode[STIX]{x1D6EC}}^{\infty }{\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707})$, where $\unicode[STIX]{x1D707}$ is a positive Borel measure on $[0,1]$ and $M_{\unicode[STIX]{x1D6EC}}^{\infty }$ is a Müntz space. In particular, we compute the essential norm of this embedding. As a consequence, we recover some results of the first author. We also study the compactness (resp. weak compactness) and compute the essential norm (resp. generalized essential norm) of the embedding $i_{\unicode[STIX]{x1D707}_{1},\unicode[STIX]{x1D707}_{2}}:L^{\infty }(\unicode[STIX]{x1D707}_{1}){\hookrightarrow}L^{\infty }(\unicode[STIX]{x1D707}_{2})$, where $\unicode[STIX]{x1D707}_{1}$, $\unicode[STIX]{x1D707}_{2}$ are two positive Borel measures on [0, 1] with $\unicode[STIX]{x1D707}_{2}$ absolutely continuous with respect to $\unicode[STIX]{x1D707}_{1}$.
Let $\unicode[STIX]{x1D711}$ be an analytic self-map of the unit disc. If $\unicode[STIX]{x1D711}$ is analytic in a neighbourhood of the closed unit disc, we give a precise formula for the essential norm of the composition operator $C_{\unicode[STIX]{x1D711}}$ on the weighted Dirichlet spaces ${\mathcal{D}}_{\unicode[STIX]{x1D6FC}}$ for $\unicode[STIX]{x1D6FC}>0$. We also show that, for a univalent analytic self-map $\unicode[STIX]{x1D711}$ of $\mathbb{D}$, if $\unicode[STIX]{x1D711}$ has an angular derivative at some point of $\unicode[STIX]{x2202}\mathbb{D}$, then the essential norm of $C_{\unicode[STIX]{x1D711}}$ on the Dirichlet space is equal to one.
Let Ap(φ) be the pth Bergman space consisting of all holomorphic functions f on the unit ball B of ℂn for which , where φ is a given normal weight. Let Tg be the extended Cesàro operator with holomorphic symbol g. The essential norm of Tg as an operator from Ap (φ)to Aq (φ)is denoted by . In this paper it is proved that, for p≤q, with 1/k=(1/p)−(1/q) , where ℜg(z)is the radial derivative of g; and for p>q, with 1/s=(1/q)−(1/p) .
Let φ and ψ be holomorphic self-maps of the unit polydisc Un in the n-dimensional complex space, and denote by Cφ and Cψ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators Cφ−Cψ from Bloch space to bounded holomorphic function space in the unit polydisc. The compactness of the difference is also characterized.
We consider differences of composition operators between given weighted Banach spaces or Hv0 of analytic functions with weighted sup-norms and give estimates for the distance of these differences to the space of compact operators. We also study boundedness and compactness of the operators. Some examples illustrate our results.
The ${{Q}_{p}}$ spaces coincide with the Bloch space for $p\,>\,1$ and are subspaces of $\text{BMOA}$ for $0\,<\,p\,\le \,1$. We obtain lower and upper estimates for the essential norm of a composition operator from the Bloch space into ${{Q}_{p}}$, in particular from the Bloch space into $\text{BMOA}$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.