We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter reviews the use of enriched diagrams and enriched Mackey functors in equivariant homotopy theory and the theory of stable model categories. The results outlined here are not used directly in the main body of the work, but they provide an important motivating context. The goal of this chapter is, therefore, to outline some of the main ideas and provide numerous references to the literature for further treatment.
Following ideas of Lurie, we give a general construction of equivariant elliptic cohomology without restriction to characteristic zero. Specializing to the universal elliptic curve we obtain, in particular, equivariant spectra of topological modular forms. We compute the fixed points of these spectra for the circle group and more generally for tori.
We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.
We correct an error in the proof of a lemma in Translation groupoids and orbifold cohomology. Canad. J. Math 62(2010), no. 3, 614–645. This error was pointed out to the authors by Li Du of the Georg-August-Universität at Göttingen, who also suggested the outline for the corrected proof.
We define a theory of Goodwillie calculus for enriched functors from finite pointed simplicial $G$-sets to symmetric $G$-spectra, where $G$ is a finite group. We extend a notion of $G$-linearity suggested by Blumberg to define stably excisive and ${\it\rho}$-analytic homotopy functors, as well as a $G$-differential, in this equivariant context. A main result of the paper is that analytic functors with trivial derivatives send highly connected $G$-maps to $G$-equivalences. It is analogous to the classical result of Goodwillie that ‘functors with zero derivative are locally constant’. As the main example, we show that Hesselholt and Madsen’s Real algebraic $K$-theory of a split square zero extension of Wall antistructures defines an analytic functor in the $\mathbb{Z}/2$-equivariant setting. We further show that the equivariant derivative of this Real $K$-theory functor is $\mathbb{Z}/2$-equivalent to Real MacLane homology.
We show that the bicategory of (representable) orbifolds and good maps is equivalent to the bicategory of orbifold translation groupoids and generalized equivariant maps, giving a mechanism for transferring results from equivariant homotopy theory to the orbifold category. As an application, we use this result to define orbifold versions of a couple of equivariant cohomology theories: $K$-theory and Bredon cohomology for certain coefficient diagrams.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.