We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main definitions and structural results of abstract polytopes, regular polytopes and chiral polytopes are presented in this chapter. Here the reader can also find equivalent definitions of abstract polytopes and of chiral abstract polytopes, that prove useful in their study. In order to illustrate some of these topics, a summary of symmetries of toroidal polytopes is provided, with special emphasis on chiral toroidal polytopes.
Abstract polytopes are partially ordered sets that satisfy some key aspects of the face lattices of convex polytopes. They are chiral if they have maximal symmetry by combinatorial rotations, but none by combinatorial reflections. Aimed at graduate students and researchers in combinatorics, group theory or Euclidean geometry, this text gives a self-contained introduction to abstract polytopes and specialises in chiral abstract polytopes. The first three chapters are introductory and mostly contain basic concepts and results. The fourth chapter talks about ways to obtain chiral abstract polytopes from other abstract polytopes, while the fifth discusses families of chiral polytopes grouped by common properties such as their rank, their small size or their geometric origin. Finally, the last chapter relates chiral polytopes with geometric objects in Euclidean spaces. This material is complemented by a number of examples, exercises and figures, and a list of 75 open problems to inspire further research.
An abstract polytope of rank $n$ is said to be chiral if its automorphism group has precisely two orbits on the flags, such that adjacent flags belong to distinct orbits. This paper describes a general method for deriving new finite chiral polytopes from old finite chiral polytopes of the same rank. In particular, the technique is used to construct many new examples in ranks 3, 4, and 5.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.