We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 6 starts with a definition of thermophysical properties, followed by detailed descriptions of important terms and equations in diffusion, including Fick’s laws on diffusion; four types of diffusion coefficients (self-diffusion, impurity diffusion, intrinsic diffusion, and interdiffusion); atomic mechanisms of diffusion; diffusion equations in binary, ternary, and multicomponent phases; as well as phases with narrow homogeneity range. Short-circuit diffusion is also briefly mentioned. Subsequently, several computational methods, including first-principles calculations, MD simulation, semi-empirical approaches, and DICTRA software, are presented to calculate or estimate diffusivity and atomic mobilities from which various diffusivities can be computed. Modeling of selected important thermophysical properties, including interfacial energy, viscosity, volume, and thermal conductivity, is briefly introduced. A procedure to establish thermophysical databases is described from a materials design point of view. A case study for simulating age hardening in AA6005 Al alloys is demonstrated mainly using thermophysical properties as input to show their importance for materials design.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.