We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A brief coverage of amplitude modulation (AM) and angle modulation techniques is provided. The basic principles of conventional AM, double-sideband suppressed carrier AM, single-sideband AM, and vestigial sideband AM are described both through time-domain and frequency-domain techniques. Frequency and phase modulation are described and their equivalence is argued. A comparison of different analog modulation techniques in terms of complexity, power, and bandwidth requirements is made. Conversion of analog signals into a digital form through sampling and quantization is studied. Proof of the sampling theorem is given. Scalar and vector quantizers are described. Uniform and non-uniform scalar quantizer designs are studied. The Lloyd-Max quantizer design algorithm is detailed. The amount of loss introduced by a quantizer is quantified by computing the mean square distortion, and the resulting signal-to-quantization noise ratio. Pulse code modulation (PCM) as a waveform coding technique, along with its variants – including differential PCM and delta modulation – is also studied.
The fundamentals of analog and digital modulation techniques are presented in Chapter 6. The theoretical underpinnings of the world's most popular amplitude modulations, frequency modulations, and phase modulations are presented. The impact of pulse shape and filtering on bit error rate of a mobile communication system is demonstrated, where Doppler spread creates an irreducible bit error rate no matter how good the signal-to-noise ratio, yet is below the noise created by other aspects of the radio system. This led Europe to select GMSK for the pan-European 2G digital cellular standard, whereas the US selected a pi/4 PSK modulation method originated in Japan that allows both coherent and non-coherent demodulation and a graceful upgrade path for existing operators to adopt the new digital modulation with gradual base station changeouts over time.Capacity and Shannon's limit are defined and explained through numerous examples.
The generation and control of large amplitude plasma gratings and other plasma structures is of paramount importance for the realization of plasma photonics. Autoresonant excitation of such structures by means of chirped amplitude-modulated lasers has been recently discussed and analyzed theoretically. Here we discuss the parameter space for the realization of such a scheme and describe the laser system that was built towards this goal. We also expand our earlier theoretical study to account for the more realistic case of a moderately focused laser beam, instead of the simplified plane wave approximation.
FM-to-AM (frequency modulation-to-amplitude modulation) conversion caused by nonuniform spectral transmission of broadband beam is harmful to high-power laser facility. Smoothing by spectral dispersion (SSD) beam is a special broadband beam for its monochromatic feature at the given time and space on the near field. The traditional method which uses the optical spectral transfer function as filters cannot accurately describe its AM characteristics. This paper presents the theoretical analysis of the etalon effect for SSD beam. With a low-order approximation, the analytic model of the temporal shape of SSD beam is obtained for the first time, which gives the detailed AM characteristics at local and integral aspects, such as the variation of ripples width and amplitude in general situation. We also analyze the FM-to-AM conversion on the focal plane; in the focusing process, the lens simply acts as an integrator to smooth the AM of SSD beam. Because AM control is necessary for the near field to avoid optics damage and for the far field to ensure an optimal interaction of laser–target, our investigations could provide some important phenomena and rules for pulse shape control.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.