Let
$\mathcal{E}$ be an ample vector bundle of rank
$r$ on a projective variety
$X$ with only log-terminal singularities. We consider the nefness of adjoint divisors
${{K}_{X}}\,+\,\left( t-r \right)\,\det \,\mathcal{E}$ when
$t\,\ge \,\dim\,X$ and
$t\,>\,r$. As an application, we classify pairs
$\left( X,\,\mathcal{E} \right)$ with
${{c}_{r}}$-sectional genus zero.