We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Acute stroke treatments are highly time-sensitive, with geographical disparities affecting access to care. This study examined the impact of driving distance to the nearest comprehensive stroke center (CSC) and rurality on the use of thrombectomy or thrombolysis in Ontario, Canada.
Methods:
This retrospective cohort study used administrative data to identify adults hospitalized with acute ischemic stroke between 2017 and 2022. Driving time from patients’ residences to the nearest CSC was calculated using the Ontario Road Network File and postal codes. Rurality was categorized using postal codes. Multivariable logistic regression, adjusted for baseline differences, estimated the association between driving distance and treatment with thrombectomy (primary outcome) or thrombolysis (secondary outcome). Driving time was modeled as a continuous variable using restricted cubic splines.
Results:
Data from 57,678 patients (median age 74 years, IQR 64–83) were analyzed. Increased driving time was negatively associated with thrombectomy in a nonlinear fashion. Patients living 120 minutes from a CSC were 20% less likely to receive thrombectomy (adjusted odds ratio [aOR] 0.80, 95% CI 0.62–1.04), and those 240 minutes away were 60% less likely (aOR 0.41, 95% CI 0.28–0.60). Driving time did not affect thrombolysis rates, even at 240 minutes (aOR 1.0, 95% CI 0.70–1.42). Thrombectomy use was similar in medium urban areas (aOR 0.80, 95% CI 0.56–1.16) and small towns (aOR 0.78, 95% CI 0.57–1.06) compared to large urban areas.
Conclusion:
Thrombolysis access is equitable across Ontario, but thrombectomy access decreases with increased driving distance to CSCs. A multifaceted approach, combining healthcare policy innovation and infrastructure development, is necessary for equitable thrombectomy delivery.
This review looks back on our experience with acute middle cerebral artery embolectomies in the 1990s, frowned upon by stroke experts at the time, and no match for the newly introduced and proven treatment of acute ischemic stroke with intravenous recombinant tissue plasminogen activator (alteplase). The past several decades have seen dramatic developments in acute cerebral revascularization, the major paradigm shift being in the form of endovascular thrombectomy. Mechanical thrombectomy has moved from the operating room, where we performed it, to the interventional angiography suite armed with ever-improving clot aspiration and retrieval technologies.
Patients with stroke while hospitalized experience important delays in symptom recognition. This study aims to describe the overall management of an in-hospital stroke population and how it compares with an out-of-hospital community-onset stroke population.
Methods:
In this retrospective observational study, we included consecutive patients with in-hospital and out-of-hospital strokes (both ischemic and hemorrhagic) over a period of one year treated at a comprehensive stroke center. Demographic and clinical data were extracted, and patient groups were compared with regard to stroke treatment time metrics.
Results:
A total of 362 patients diagnosed with acute stroke were included, of whom 38 (10.5%) had in-hospital and 324 (89.5%) had out-of-hospital strokes. The median delay to stroke recognition (time between the last time seen well and first time seen symptomatic) was significantly longer in in-hospital compared to out-of-hospital strokes (77.5 [0–334.8] vs. 0 [0–138.5] min, p = 0.04). The median time interval from stroke code activation to the arrival of the stroke team at the bedside was significantly shorter in in-hospital versus out-of-hospital cases (10 [6–15] vs. 15 [8–24.8] min, p = 0.01). In-hospital strokes were less likely to receive thrombolysis (12.8% vs. 45.4%, p < 0.01) with significantly higher mortality (18.2% versus 2.6%, p < 0.01) and longer overall median hospital stay (3 [1–7] vs. 12 days [7–23], p < 0.01) compared to out-of-hospital strokes.
Conclusion:
This study showed significant delays in stroke symptom recognition and stroke code activation for in-hospital stroke patients despite comparable overall stroke time metrics. Development of in-hospital stroke protocols and systematic staff training on stroke symptom recognition should be implemented to improve care for hospitalized patients.
In the United States, one stroke occurs every 40 seconds on average. Ischemic stroke is a leading cause of serious long-term disability and the fifth leading cause of death. Every year, 795,000 people experience a new or recurrent stroke. In 2018, stroke accounted for 1 of every 19 deaths. Stroke typically occurs suddenly, with symptoms of motor weakness, impaired speech, vision loss, or numbness, and can lead to significant disability. The financial burden of stroke, including direct medical costs and potential wages lost, is greater than $30 billion per year. Time-based acute stroke treatments improve functional outcome and reduce mortality, which makes rapid recognition of stroke of utmost importance.
Hyperacute treatment of acute stroke may lead to thrombolysis in stroke mimics (SM). Our aim was to determine the frequency of thrombolysis in SM in primary stroke centers (PSC) dependent on telestroke versus comprehensive stroke centers (CSC).
Method:
Retrospective review of prospectively collected data from the Quality improvement and Clinical Research (QuICR) registry, the Discharge Abstract Database (DAD), and The National Ambulatory Care Reporting System (NACRS) of consecutive patients treated with intravenous thrombolysis for acute ischemic stroke in Alberta (Canada) from April 2016 to March 2021.
Result:
A total of 2471 patients who received thrombolysis were included. Linking the QuICR registry to DAD 169 (6.83%) patients were identified as SM; however, on our review of the records, only 112 (4.53%) were actual SM. SMs were younger with a mean age of 61.66 (±16.15) vs 71.08 (±14.55) in stroke. National Institute of Health Stroke Scale was higher in stroke with a median (IQR) of 10 (5–17) vs 7 (5–10) in SM. Only one patient (0.89 %) in SM groups had a small parenchymal hemorrhage versus 155 (6.57%) stroke patients had a parenchymal hemorrhage. There was no death among patients of thrombolysed SM during hospitalization versus 276 (11.69%) in stroke. There was no significant difference in the rate of SM among thrombolysed patients between PSC 27 (5.36%) versus CSC 85 (4.3%) (P = 0.312). The most responsible diagnosis of SM was migraine/migraine equivalent, functional disorder, seizure, and delirium.
Conclusion:
The diagnosis of SM may not always be correct when the information is extracted from databases. The rate of thrombolysis in SM via telestroke is similar to treatment in person at CSC.
Mortality remains a substantial problem after acute ischemic stroke, despite advances in acute stroke treatment over the past three decades. Mortality is particularly high among patients with Total Anterior Circulation Stroke (TACS), generally representing patients with middle cerebral artery occlusions. Notably however, these patients also stand to benefit most from new therapies including endovascular thrombectomy (EVT). In this study, we aimed to examine temporal trends in, and factors associated with, 30-day in-hospital mortality after TACS.
Methods:
Information on all patients with community-onset TACS from 1994 through 2019 was extracted from a prospective acute stroke registry. Multivariate analysis was performed on the primary outcome of 30-day in-hospital mortality, as well as secondary functional outcomes.
Results:
We studied 1106 patients hospitalized for community-onset TACS, 456 (41%) of whom experienced 30-day in-hospital mortality. Over the 25 years of observation, 30-day in-hospital mortality rose and then fell. Increased odds of mortality was associated with age and stroke severity. Decreased odds of mortality was associated with alteplase therapy and EVT, as well as presentation to hospital more than 12 hours after stroke onset. Treatment with alteplase, EVT, or both was associated with higher odds of functional independence and discharge home, and shorter lengths of stay in acute care.
Conclusions:
Patients receiving alteplase, EVT, or both had lower 30-day in-hospital mortality and better functional outcomes than those who were untreated. These observational data demonstrate the benefits of recanalization therapy in routine clinical practice.
Intravenous thrombolytic therapy (IV) with recombinant tissue-plasminogen activator (alteplase; 0.9 mg/kg over 1h) is beneficial for acute ischaemic stroke patients with potentially disabling neurological deficits, and without contraindications, when started =4.5h of onset. Benefit is time-dependent: among 1000 patients, IVT =3h lessen long-term disability in 178 patients, between 3-4.5h in 66. IVT under 4.5h is associated with an increase in symptomatic haemorrhage, but not an increase in death or severe disability. Based on trial evidence, IVT =3h is strongly endorsed, and between 3-4.5 hours moderately endorsed, by guidelines on 5 continents. Benefit is evident in patients under and over age 80, and in patients with up to moderate, but not extensive (more than 100 cc), early ischaemic changes on initial CT or MRI. IVT is also beneficial for patients =4.5h after onset with substantial salvageable tissue on penumbral CT or MR imaging. Systems of care should be optimized to start IVT =60m, and optimally =30m, after ED arrival. Large-scale trials are needed to further enhance IVT, testing: faster treatment start in mobile stroke units (mobile CT ambulances): fibrinolytic agent and concomitant lytic-enhancing combinations; bridging neuroprotection and collateral enhancement; and the optimal way to combine intravenous thrombolytic therapy and endovascular mechanical thrombectomy.
A Canadian Stroke Best Practices consensus statement on Acute Stroke Management during pregnancy was published in 2018. The state of individual practice, however, is unknown.
Methods:
A survey on treatment of acute stroke in pregnant and post-partum women was distributed via the Canadian Stroke Consortium email list. Descriptive statistics (frequencies and proportions) were calculated for demographic and response variables and free-text responses were coded for thematic content.
Results:
Thirty-five participants completed the survey; 12 had experience with intravenous tissue plasminogen activator (IV-tPA), endovascular therapy (EVT), or both in pregnant patients. None had treatment-related complications. The majority (92%) of those who had not yet encountered the issue in practice expressed some reservation about giving IV-tPA to an otherwise eligible pregnant woman. In a theoretical scenario where an otherwise eligible pregnant woman was a candidate for both IV-tPA and EVT, 58% of respondents would have opted for EVT alone. Amongst this cohort comprised mainly of stroke sub-specialists, more than a third had treated pregnant patients with reperfusion therapy.
Conclusions:
The reported safety experience with both IV-tPA and EVT was reassuring. Overall, there was a hesitancy towards use of IV-tPA in pregnancy that is discordant with the recent consensus statement. Possible barriers to uptake identified through thematic analysis were concerns regarding risks of bleeding in the pregnant patient, presence of EVT as a perceived alternative, and the need for express consent from the patient and family.
We investigated the impact of regionally imposed social and healthcare restrictions due to coronavirus disease 2019 (COVID-19) to the time metrics in the management of acute ischemic stroke patients admitted at the regional stroke referral site for Central South Ontario, Canada.
Methods:
We compared relevant time metrics between patients with acute ischemic stroke receiving intravenous tissue plasminogen activator (tPA) and/or endovascular thrombectomy (EVT) before and after the declared restrictions and state of emergency imposed in our region (March 17, 2020).
Results:
We identified a significant increase in the median door-to-CT times for patients receiving intravenous tPA (19 min, interquartile range (IQR): 14–27 min vs. 13 min, IQR: 9–17 min, p = 0.008) and/or EVT (20 min, IQR: 15–33 min vs. 11 min, IQR: 5–20 min, p = 0.035) after the start of social and healthcare restrictions in our region compared to the previous 12 months. For patients receiving intravenous tPA treatment, we also found a significant increase (p = 0.005) in the median door-to-needle time (61 min, IQR: 46–72 min vs. 37 min, IQR: 30–50 min). No delays in the time from symptom onset to hospital presentation were uncovered for patients receiving tPA and/or endovascular reperfusion treatments in the first 1.5 months after the establishment of regional and institutional restrictions due to the COVID-19 pandemic.
Conclusion:
We detected an increase in our institutional time to treatment metrics for acute ischemic stroke patients receiving tPA and/or endovascular reperfusion therapies, related to delays from hospital presentation to the acquisition of cranial CT imaging for both tPA- and EVT-treated patients, and an added delay to treatment with tPA.
Decisions to treat large-vessel occlusion with endovascular therapy (EVT) or intravenous alteplase depend on how physicians weigh benefits against risks when considering patients’ comorbidities. We explored EVT/alteplase decision-making by stroke experts in the setting of comorbidity/disability.
Methods:
In an international multi-disciplinary survey, experts chose treatment approaches under current resources and under assumed ideal conditions for 10 of 22 randomly assigned case scenarios. Five included comorbidities (cancer, cardiac/respiratory/renal disease, mild cognitive impairment [MCI], physical dependence). We examined scenario/respondent characteristics associated with EVT/alteplase decisions using multivariable logistic regressions.
Results:
Among 607 physicians (38 countries), EVT was chosen less often in comorbidity-related scenarios (79.6% under current resources, 82.7% assuming ideal conditions) versus six “level-1A” scenarios for which EVT/alteplase was clearly indicated by current guidelines (91.1% and 95.1%, respectively, odds ratio [OR] [current resources]: 0.38, 95% confidence interval 0.31–0.47). However, EVT was chosen more often in comorbidity-related scenarios compared to all other 17 scenarios (79.6% versus 74.4% under current resources, OR: 1.34, 1.17–1.54). Responses favoring alteplase for comorbidity-related scenarios (e.g. 75.0% under current resources) were comparable to level-1A scenarios (72.2%) and higher than all others (60.4%). No comorbidity independently diminished EVT odds when considering all scenarios. MCI and dependence carried higher alteplase odds; cancer and cardiac/respiratory/renal disease had lower odds. Being older/female carried lower EVT odds. Relevant respondent characteristics included performing more EVT cases/year (higher EVT-, lower alteplase odds), practicing in East Asia (higher EVT odds), and in interventional neuroradiology (lower alteplase odds vs neurology).
Conclusion:
Moderate-to-severe comorbidities did not consistently deter experts from EVT, suggesting equipoise about withholding EVT based on comorbidities. However, alteplase was often foregone when respondents chose EVT. Differences in decision-making by patient age/sex merit further study.
Guidelines are lacking for management of acute ischemic stroke and stroke prevention in patients with immune thrombocytopenia (ITP). Our aim is to highlight the dilemma inherent in managing patients with both significant bleeding and thrombotic risk factors. In this review, we present two patients with history of ITP who presented with acute ischemic stroke and received tissue plasminogen activator (tPA) and endovascular thrombectomy (EVT), a rare management strategy in this patient population. In addition, we identified 27 case reports of ischemic stroke in patients with ITP; none of them received tPA or EVT. Furthermore, there are 92 patients with significant thrombocytopenia with no available data regarding the cause of thrombocytopenia, who were acutely treated with tPA or EVT. Conclusive evidence cannot be determined based on these limited number of cases. Future multicenter prospective cohort studies in patients with ITP are needed to provide better evidence-based treatment plans. At present, treatment of acute ischemic stroke in patients with ITP requires close collaboration between hematology and vascular neurology experts to find a balance between the benefit and risk of hemorrhagic complications.
Pulmonary embolism (PE) is a potentially life-threatening condition. The management of low, intermediate and high-risk PE are explained in a stepwise fashion. Readers are provided with information on thrombolysis, and how to anticoagulate following this intervention.
Stroke is a significant underlying cause of epilepsy. Seizures due to ischemic stroke (IS) are generally categorized into early seizures (ESs) and late seizures (LSs). Seizures in thrombolysis situations may raise the possibility of other etiology than IS.
Aim.
We overtook a systematic review focusing on the pathogenesis, prevalence, risk factors, detection, management, and clinical outcome of ESs in IS and in stroke/thrombolysis situations. We also collected articles focusing on the association of recombinant tissue-type plasminogen activator (rt-PA) treatment and epileptic seizures.
Results.
We have identified 37 studies with 36,775 participants. ES rate was 3.8% overall in patients with IS with geographical differences. Cortical involvement, severe stroke, hemorrhagic transformation, age (<65 years), large lesion, and atrial fibrillation were the most important risk factors. Sixty-one percent of ESs were partial and 39% were general. Status epilepticus (SE) occurred in 16.3%. 73.6% had an onset within 24 h and 40% may present at the onset of stroke syndrome. Based on EEG findings seizure-like activity could be detected only in approximately 18% of ES patients. MRI diffusion-weighted imaging and multimodal brain imaging may help in the differentiation of ischemia vs. seizure. There are no specific recommendations with regard to the treatment of ES.
Conclusion.
ESs are rare complications of acute stroke with substantial burden. A significant proportion can be presented at the onset of stroke requiring an extensive diagnostic workup.
Alteplase is an effective treatment for ischaemic stroke patients, and it is widely available at all primary stroke centres. The effectiveness of alteplase is highly time-dependent. Large tertiary centres have reported significant improvements in their door-to-needle (DTN) times. However, these same improvements have not been reported at community hospitals.
Methods
Red Deer Regional Hospital Centre (RDRHC) is a community hospital of 370 beds that serves approximately 150,000 people in their acute stroke catchment area. The RDRHC participated in a provincial DTN improvement initiative, and implemented a streamlined algorithm for the treatment of stroke patients. During this intervention period, they implemented the following changes: early alert of an incoming acute stroke patient to the neurologist and care team, meeting the patient immediately upon arrival, parallel work processes, keeping the patient on the Emergency Medical Service stretcher to the CT scanner, and administering alteplase in the imaging area. Door-to-needle data were collected from July 2007 to December 2017.
Results
A total of 289 patients were treated from July 2007 to December 2017. In the pre-intervention period, 165 patients received alteplase and the median DTN time was 77 minutes [interquartile range (IQR): 60–103 minutes]; in the post-intervention period, 104 patients received alteplase and the median DTN time was 30 minutes (IQR: 22–42 minutes) (p < 0.001). The annual number of patients that received alteplase increased from 9 to 29 in the pre-intervention period to annual numbers of 41 to 63 patients in the post-intervention period.
Conclusion
Community hospitals staffed with community neurologists can achieve median DTN times of 30 minutes or less.