We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Although electrical pacing is of great utility in many cardiovascular diseases, its effects on the combined cardiac cell therapy have not been established. We hypothesised that mesenchymal stem cell transplantation changes cardiac sympathetic nerve and gap junction, and concomitant pacing has additional biological effects.
Methods
We monitored cardiac rhythm for 4 weeks after human mesenchymal stem cell transplantation (1 × 107, epicardial injection) in 18 dogs in vivo, seven human mesenchymal stem cell with pacing, six human mesenchymal stem cell, and five sham, and evaluated the sympathetic innervation, nerve growth factor-β; tyrosine hydroxylase, angiogenesis, von Willebrand factor, and connexin43 expressions by real time (RT)–polymerase chain reaction and immunostaining. We also measured mRNA expressions of nerve growth factor-β, von Willebrand factor, and connexin43 in vitro culture of human mesenchymal stem cell with or without pacing.
Results
Human mesenchymal stem cell transplanted hearts expressed higher mRNA of nerve growth factor-β (p < 0.01) with sympathetic nerves (p < 0.05), higher mRNA of von Willebrand factor (p < 0.001) with angiogenesis (p < 0.001), but lower mRNA of connexin43 (p < 0.0001) with reduced gap junctions (p < 0.001) than sham. Pacing with human mesenchymal stem cell transplantation resulted in higher expression of mRNA of connexin43 (p < 0.02) and gap junctions (p < 0.001) compared with sham. In contrast, in vitro paced mesenchymal stem cell reduced expression of connexin43 mRNA (p < 0.02).
Conclusion
Human mesenchymal stem cell transplantation increased cardiac sympathetic innervation and angiogenesis, but reduced gap junction after transplanted in the canine heart. In contrast, concomitant electrical pacing increased gap junction expression by paracrine action.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.