We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter covers the potential use of quantum algorithms for cryptanalysis, that is, the breaking and weakening of cryptosystems. We discuss Shor’s algorithm for factoring and discrete logarithm, which render widely used public-key cryptosystems vulnerable to attack, given access to a sufficiently large-scale quantum computer. We present resource estimates from the literature for running Shor’s algorithm, and we discuss the outlook for postquantum cryptography, which aims to replace existing cryptosystems while being resistant to quantum attack. We also cover quantum approaches for weakening the security of cryptosystems based on Grover’s search algorithm.
This chapter covers the quantum Fourier transform, which is an essential quantum algorithmic primitive that efficiently applies a discrete Fourier transform to the amplitudes of a quantum state. It features prominently in quantum phase estimation and Shor’s algorithm for factoring and computing discrete logarithms.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.