We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A bielliptic surface (or hyperelliptic surface) is a smooth surface with a numerically trivial canonical divisor such that the Albanese morphism is an elliptic fibration. In the first part of this article, we study the structure of bielliptic surfaces over a field of characteristic different from $2$ and $3$, in order to prove the Shafarevich conjecture for bielliptic surfaces with rational points. Furthermore, we demonstrate that the Shafarevich conjecture does not generally hold for bielliptic surfaces without rational points. In particular, this article completes the study of the Shafarevich conjecture for minimal surfaces of Kodaira dimension $0$. In the second part of this article, we study a Néron model of a bielliptic surface. We establish the potential existence of a Néron model for a bielliptic surface when the residual characteristic is not equal to $2$ or $3$.
Chapter 1 is a gentle introduction of the Mordell conjecture for beginners ofDiophantine geometry. We explain what the Mordell conjecture is, its brief history and its importance in current mathematics.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.