We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Considering a double-indexed array $(Y_{n,i:\,n\ge 1,i\ge 1})$ of non-negative regularly varying random variables, we study the random-length weighted sums and maxima from its ‘row’ sequences. These sums and maxima may have the same tail and extremal indices (Markovich and Rodionov 2020). The main constraints of the latter results are that there exists a unique series in a scheme of series with the minimum tail index and the tail of the term number is lighter than the tail of the terms. Here, a bounded random number of series are allowed to have the minimum tail index and the tail of the term number may be heavier than the tail of the terms. We derive the tail and extremal indices of the weighted non-stationary random-length sequences under a broader set of conditions than in Markovich and Rodionov (2020). We provide examples of random sequences for which the assumptions are valid. Perspectives in adopting the results in different application areas are formulated.
We study the tail asymptotics of two functionals (the maximum and the sum of the marks) of a generic cluster in two sub-models of the marked Poisson cluster process, namely the renewal Poisson cluster process and the Hawkes process. Under the hypothesis that the governing components of the processes are regularly varying, we extend results due to [6, 19], notably relying on Karamata’s Tauberian Theorem to do so. We use these asymptotics to derive precise large-deviation results in the fashion of [32] for the just-mentioned processes.
This article describes the limiting distribution of the extremes of observations that arrive in clusters. We start by studying the tail behaviour of an individual cluster, and then we apply the developed theory to determine the limiting distribution of
$\max\{X_j\,:\, j=0,\ldots, K(t)\}$
, where K(t) is the number of independent and identically distributed observations
$(X_j)$
arriving up to the time t according to a general marked renewal cluster process. The results are illustrated in the context of some commonly used Poisson cluster models such as the marked Hawkes process.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.